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Evaluation of Raman spectroscopy combined with
the gated recurrent unit serum detection method
in early screening of gastrointestinal cancer†

Kunxiang Liu, a,b Bo Liu,a,b Yu Wang,a,b Qi Zhao,c,d Qinian Wu*e and Bei Li*a,b

Gastric and colorectal cancers are significant causes of human mortality. Conventionally, the diagnosis of

gastrointestinal tumors has been accomplished through image-based techniques, including endoscopic

and biopsy procedures coupled with tissue staining. Most of these methods are invasive. In contrast,

Raman spectroscopy has the advantages of being non-invasive and label-free and requiring no additional

reagents, making it a potential tool for the detection of serum components. In this study, we collected Raman

spectra of serum samples from patients with gastric cancer (n = 93) and colorectal cancer (n = 92) and from

healthy individuals (n = 100). Analysis of Raman peak areas revealed that cancer patients had significantly

higher peak areas at around 2923 cm−1 compared to normal individuals, which corresponded to the presence

of lipids and proteins. We successfully achieved the early screening of gastrointestinal tumors using the

improved gated recurrent unit (GRU) algorithm and traditional machine learning methods. The accuracy of

identifying digestive tract tumors using different recognition models exceeds 84.72%, with support vector

machine (SVM) and GRU achieving 100% accuracy. The use of GRU further demonstrated its ability to differen-

tiate subtypes of gastric and colorectal cancers based on the degree of differentiation and stage, with a reco-

gnition accuracy exceeding 95%, which is challenging using traditional machine learning methods.

Furthermore, our study revealed that principal component analysis (PCA) dimensionality reduction has a

limited impact on the recognition results obtained using different recognition models.

Introduction

Globally, gastric cancer represents a frequently diagnosed
malignancy, with an annual incidence of about 1 million
cases. Due to the advanced stage at which gastric cancer is
often detected and its heightened mortality rate, it was pro-
jected to account for 769 000 deaths in 2020.1 Early detection
of gastric cancer is pivotal in improving the survival rate and
prognosis, as the 5-year survival rate for early gastric cancer
can surpass 90% through effective treatment. Therefore, early

detection is deemed the most important modality for improv-
ing gastric cancer outcomes.2 Colorectal cancer ranks third
among the commonly diagnosed cancers in men and second
in women worldwide. With high metastatic potential and poor
prognosis, colorectal cancer is also one of the leading causes
of death globally.3

At present, the main diagnostic methods for colorectal
cancer include the fecal occult blood test, blood tests, and
colonoscopy for high-risk individuals.4,5 Colonoscopy coupled
with tissue staining is regarded as the gold standard.
Additionally, for the diagnosis of gastric cancer, endoscopy
coupled with histopathology remains the primary diagnostic
approach.6 Although endoscopy, which is the gold standard
for gastrointestinal diagnosis, has reliable accuracy, it is
difficult to popularize it to routine screening diagnosis
because endoscopy is invasive and affected by patient compli-
ance and operator techniques.7 Therefore, we need a new tech-
nique for practical and rapid serological testing for early
screening of gastrointestinal tumors.

Since its discovery by the Indian scientist C. V. Raman in
1928, Raman spectroscopy techniques have undergone signifi-
cant development and have widespread application across
various fields. The Raman scattering between matter and
photons can be reflected in Raman spectra, thus visualizing
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the molecular motion of matter. Owing to its ability to reveal
the biomolecular changes that malignant tumors instigate in
the human body, Raman spectroscopy has emerged as a new
diagnostic approach for malignant tumors. Recent years have
seen successful applications of Raman spectroscopy in the
diagnosis of malignant tumors located in diverse parts of the
human body, including breast cancer, brain cancer, cervical
cancer, gastric cancer, etc.8–13

Numerous studies have utilized Raman spectroscopy to
diagnose gastric cancer based on blood, tissue, cell line, and
other samples. Such studies have successfully distinguished
between cancer and normal samples while also identifying
different stages of gastric cancer.7,12,14–16 However, these
studies generally involved a limited sample size and did not
consider the varying degrees of cancer cell differentiation.
Furthermore, the analysis of Raman spectra in these studies
mostly relied on traditional machine learning methods such
as PCA and linear discriminant analysis (LDA) that yielded
positive results.11 Nonetheless, as the number of recognition
types and the amount of spectral data continue to increase,
simple machine learning methods may become inadequate.
Therefore, the incorporation of deep learning spectral proces-
sing methods is crucial for tackling complex challenges associ-
ated with Raman spectroscopy data.

Convolutional neural networks (CNNs) are the most utilized
models in deep learning applications for Raman spectroscopy
recognition.13,17–19 A CNN is capable of comprehensively
mining data features that result in highly accurate classifi-
cations. Nonetheless, as the amount of data and spectral cat-
egories increase, a CNN necessitates the continuous augmen-
tation of network depth, leading to heightened computational
complexity and processing time.20 Additionally, while CNNs
excel in processing image data, they are circumscribed in their
ability to process one-dimensional spectral data.21 Recurrent
neural networks (RNNs), on the other hand, can effectively
utilize entire spectral data and call upon earlier data for sub-
sequent analyses, providing an edge in processing Raman
spectral data.22

In long-term RNN training, the primary disadvantage is the
problem of long-term dependency. To overcome this issue,
long short-term memory (LSTM) neural networks have been
used to selectively maintain or discard certain information
from previous stages using three control gates and additive
iteration to circumvent the problem of gradient explosion.23

However, the drawback of LSTM is that its computational
complexity is more than three times that of the original
RNN. Therefore, we adopted a GRU with the same function-
ality and basic structure as LSTM, reducing computational
complexity.

Our study analyzed the characteristic peaks of Raman
spectra of gastric and colorectal cancer sera and compared the
differences in spectra between gastrointestinal tumor serum
and normal human serum through statistical analysis of
characteristic peak areas. We used an improved GRU network
to diagnose gastric and colorectal cancers, identifying
different stages and different degrees of differentiation for

gastric cancers and different degrees of differentiation for col-
orectal cancers, and compared the results with those of con-
ventional machine learning recognition methods. Additionally,
we investigated the impact of principal component analysis
(PCA) on high-dimensional Raman spectroscopy data dimen-
sionality reduction and classification. The workflow of using
GRU and Raman spectroscopy to diagnose gastrointestinal
tumors and identify tumor subtypes is shown in Fig. 1.

Materials and methods
Collection and preparation of serum samples

We collected serum samples from 93 patients diagnosed with
gastric cancer and 92 patients diagnosed with colorectal
cancer at Sun Yat-sen University Cancer Center between 2007
and 2013. The eligibility criteria included the diagnosis of
gastric cancer by gastroscopy and pathological biopsy, the
absence of tumors in other body systems, non-existence of sig-
nificant cardiac, pulmonary, hepatic, renal, or other organ dys-
function, and no prior surgical or chemotherapy treatments
before sample collection. The collection conditions for colorec-
tal cancer samples were comparable to those for gastric cancer
samples. We also collected serum samples from 100 non-
tumor volunteers without gastrointestinal disease history as a
control group at The Third Bethune Hospital of Jilin
University.

Following an overnight fast spanning 10 hours, 3 ml of peri-
pheral blood was withdrawn from each subject. After coagu-
lation, centrifugation was carried out at 3000 rpm for
10 minutes. After this, the supernatant serum sample was col-
lected in a specialized cryopreservation tube and maintained
in a −80 °C refrigerator until Raman measurements were
taken.

Raman measurements

We used a Raman spectroscopy system (R300 (objective lens:
Olympus, 100×, NA = 0.8), Hooke Instruments, Changchun,
China) with a laser wavelength of 532 nm to collect Raman
spectra of serum samples. Raman spectra were obtained for
ten different locations of each patient, with three spectra being
collected for each location. The three spectra were averaged at
each location, resulting in 10 average spectra of serum
samples from diverse locations of each patient for the ensuing
spectral data analysis. The conditions for Raman spectrum col-
lection were as follows: a grating of 600, a laser power of
5 mW, and an integral time of 3 s. The Raman spectra ranged
approximately from 400 cm−1 to 3800 cm−1.

Data preprocessing

Data preprocessing can effectively attenuate unnecessary spec-
tral signal changes and interference caused by instrument fluc-
tuations and fluorescent substances.24 The preprocessing
process for the Raman spectra of the serum samples includes
cosmic ray removal, filtering, baseline correction, and normali-
zation. By linear fitting the points around the singular values
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of the spectral data, we removed the cosmic rays. The para-
meters were set to filter size = 5 and dynamic factor = 4.5. We
filtered the data with a Savitzky–Golay filter with filter window
width = 5 and filter fitting order = 3. We used the airPLS algor-
ithm to gradually approximate the Raman spectral baseline
with lambda = 100 and maximum number of iterations = 15.
Finally, the spectral data were normalized by min–max
normalization.25,26 It is worth mentioning that to handle
minor differences in the x-axis among the different spectra, we
processed the data using cubic spline interpolation. All proces-
sing was conducted in Python.

PCA downscaling

Raman spectra have nearly one thousand features, which are
typical of high-dimensional feature data. Directly analyzing all

features within Raman spectra can generate considerable
noise interference, potentially compromising classification
accuracy. PCA is one of the most frequently used dimensional-
ity reduction algorithms. PCA works by reconstructing
k-dimensional features based on the original n-dimensional
features, with the goal of identifying the direction of
maximum variance of the data set as the principal component.
PCA algorithms have seen extensive use in data analysis
studies revolving around Raman spectroscopy. In each classifi-
cation assignment within this study, we employed PCA algor-
ithms to extract primary components that could reflect data
differences, where the contribution was greater than 95%. We
compared the discrepancies between PCA algorithms utilizing
various classification algorithms and the direct use of classifi-
cation algorithms to analyze Raman spectral data.

Fig. 1 The workflow of using GRU and Raman spectroscopy to identify gastrointestinal tumors and tumor subtypes.
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Machine learning classification methods

We constructed a machine learning classification model utiliz-
ing SVM, k-nearest neighbor (KNN), and LDA, commonly
found within the sklearn machine learning library. For each
classification task, we divided the dataset into training and
testing sets at a ratio of 4 : 1, further subdividing the training
set into a training set and a validation set at a ratio of 4 : 1.
During the training process, a 5-fold cross-validation tech-
nique was employed, saving the optimal model after five train-
ing sessions for predicting the testing dataset. The accuracy of
the optimal model in predicting the test set is the outcome
presented in the article.

Gated recurrent unit

GRU, a type of RNN, functions similarly to LSTM in controlling
the flow and loss of features by introducing a gate mechanism
(forgetting gate, memory gate, and output gate) to overcome
gradient problems in long-term memory and backpropagation.
While performing comparably to LSTM,27 the GRU28 possesses
fewer output gates and parameters, making it computationally
cheaper.

For our experiment, we utilized a two-layer GRU neural
network to process Raman spectral data, determining the
appropriate number of GRU hidden layer nodes based on stat-
istical feature bandwidth information to extract spectral
feature information. We included dropout to the connection
layer with a parameter of 0.5 to avoid overfitting the model.
Each layer had 200 neurons, producing output for different
target categories through the fully connected layer. To address
the challenge of Raman spectrum recognition in serum
samples of digestive tract tumors, we utilized the GRU to fully
learn pre and post-spectrum data, thereby systematically
exploring the entire Raman spectrum’s characteristics. The
activation function for the model was ReLU, and the loss func-
tion was the cross-entropy loss function. The ADAM optimizer
trained the network, utilizing the following parameters: a
learning rate of 0.0001 and exponential decay rates at β_1 = 0.5
and β_2 = 0.999. We trained the model for 1000 iterations,
saving accuracy and loss values for each training session.

Results
Raman analysis of serum from patients with gastrointestinal
tumors

We collected a total of 930 Raman spectra (mean spectra) from
93 gastric cancer patients, of which 92 had a clear diagnosis of
differentiation degree (20 cases were well and moderately
differentiated and 72 cases were poorly differentiated) and
91 had a clear diagnosis of the stage (32 cases of stage I + II
and 59 cases of stage III + IV). The specific gender and age dis-
tribution are shown in Table 1.

A total of 920 Raman spectra (mean spectra) were collected
from 92 patients with colorectal cancer, of which 91 cases had
a clear diagnosis of differentiation degree (67 cases with mod-
erately differentiated adenocarcinoma, 10 cases with moder-

ately to poorly differentiated adenocarcinoma, 2 cases with
poorly differentiated adenocarcinoma, 2 cases with well-differ-
entiated adenocarcinoma, and 10 cases with mucinous adeno-
carcinoma) and 91 cases had a clear diagnosis of the stage
(including 3 cases of stage I, 25 cases of stage II, 4 cases of
stage III, 1 case of stage IIIA, 36 cases of stage IIIB, 6 cases of
stage IIIC, and 16 cases of stage IV). Among them, there was
only one case of stage IIIA, which was not representative in the
spectral analysis, so we removed the data of this case. The
specific gender and age distribution are shown in Table 2.

The 100 healthy individuals used as controls included
50 males and 50 females, with a mean age of 48.13 ± 15.2890.

Raman spectroscopy, as a new optical diagnostic method, can
qualitatively and quantitatively reflect the biochemical com-
ponents of biological samples, such as proteins, lipids, and
nucleic acids. We collected a total of 930 Raman spectra for
gastric cancer, 920 Raman spectra for colorectal cancer, and 999
Raman spectra for non-tumor control and analyzed the differ-
ences of Raman spectra between sera of gastric and colorectal
cancer patients and non-tumor individuals, respectively.

Fig. 2a shows the differences between the average Raman
spectra of gastric cancer and non-tumor groups. The main
characteristic peaks are located at 857, 1000, 1152, 1275, 1332,
1435, 1515, 1602, and 2923 cm−1. Fig. 2b shows the difference
between the average Raman spectra of the intestinal cancer
group and the non-tumor group. The main characteristic
peaks are located at 857, 952, 1000, 1152, 1275, 1332, 1435,
1515, 1602, and 2923 cm−1. By searching the literature on the
application of Raman spectroscopy, it was found that these
characteristic peaks are mainly related to proteins, lipids,
amide III, and nucleic acids. The specific Raman peak position
comparison is shown in Table S1.†

To have a more visual and macroscopic view of the variation
in the content of the components corresponding to the above
Raman feature peak positions, we calculated the peak areas of
the 10 feature peaks for each Raman spectrum and plotted the
heat map (Fig. S1†). It is worth mentioning that to better
remove the Raman spectral baseline and to better compare the
differences in peak areas between spectra, in this process, we
used the airPLS algorithm to gradually approximate the
Raman spectral baseline with lambda = 100 and maximum
number of iterations = 15. From the heat map, we can visualize

Table 1 Detailed information about the gastric cancer patients in this
study

Degree of differentiation (n = 92)
Stages of gastric
cancer (n = 91)

Well and
moderately
differentiated
(n = 20)

Poorly
differentiated
(n = 72)

I + II
(n = 32)

III + IV
(n = 59)

Male 16 (80%) 41 (56.94%) 25 (78.125%) 31 (52.54%)
Female 4 (20%) 31 (43.06%) 7 (21.875%) 28 (47.46%)
Age (<56) 9 (45%) 41 (56.94%) 14 (43.75%) 35 (59.32%)
(>56) 11 (55%) 31 (43.06%) 18 (56.25%) 24 (40.68%)
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the differences in intensity between gastric cancer and non-
tumor groups at 1000, 1152, 1435, 1515, 1602, and 2923 cm−1,
especially at 2923 cm−1. The differences in intensity between
colorectal cancer and non-tumor groups are observed at 1000,
1152, 1515, 1602, and 2923 cm−1. It is obvious that the inten-
sity of Raman peaks at the 2923 cm−1 position is significantly
higher in both gastric cancer and colorectal cancer patients
than in non-tumor individuals, and the C–H peaks represented
at this position are mainly related to the lipids and proteins in
biological samples.

Fig. S2† shows the average Raman spectra of patients with
different differentiation and different stages of gastric and col-
orectal cancers; just from the spectra, it is difficult for us to
visualize the differences between the spectra with the naked
eye. So, we need to identify them with the help of statistical or
artificial intelligence-related methods.

Distinguishing gastric cancer and colorectal cancer based on
Raman spectroscopy and deep learning

We implemented the recognition of Raman spectra of gastric and
colorectal cancers using an improved GRU network with 1000

training cycles. A comparison with commonly used machine
learning models was also made. We validated the effectiveness of
PCA-SVM, SVM, PCA-KNN, KNN, PCA-LDA, LDA, PCA-GRU, and
GRU to identify Raman spectra. The results of different methods
to identify serum Raman spectra of patients with gastric cancer (n
= 930) versus the non-tumor group (n = 999) were 100%, 100%,
99.48%, 100%, 98.19%, 84.72%, 100%, and 100%. The results of
different methods to identify colorectal cancer patients (n = 920)
versus non-tumor individuals (n = 999) were 100%, 100%,
99.22%, 99.74%, 98.70%, 86.46%, 100%, and 100%. The specific
results are shown in Table 3.

According to the results, machine learning methods such
as SVM, KNN and LDA can identify gastric or colorectal
cancer, and most of the identification results can reach over
98% accuracy. Among them, SVM is known as the “king of
binary classification”, so it is the best in this recognition, but
the improved GRU is not inferior either. The confusion matrix,
receiver operating characteristic (ROC), training accuracy and
loss values of gastrointestinal tumor spectral data identified by
GRU and PCA-GRU (contribution >95%) are shown in Fig. 3. In
conclusion, Raman spectroscopy combined with an AI algor-

Table 2 Detailed information about the colorectal cancer patients in this study

Degree of differentiation (n = 91)

Moderately
differentiated (n = 67)

Moderately to poorly
differentiated (n = 10)

Poorly differentiated
(n = 2)

Well differentiated
(n = 2)

Mucinous adenocarcinoma
(n = 10)

Male 42 (62.69%) 7 (70%) 2 (100%) 1 (50%) 9 (90%)
Female 25 (37.31%) 3 (30%) 0 1 (50%) 1 (10%)
Age 53.55 ± 11.8325 51.3 ± 9.8899 68 ± 15 56 ± 15 56.4 ± 10.8738

Stages of colorectal cancer (n = 91)

I (n = 3) II (n = 25) III (n = 4) IIIA (n = 1) IIIB (n = 36) IIIC (n = 6) IV (n = 16)

Male 2 (66.67%) 17 (68%) 4 (100%) 0 25 (69.44%) 4 (60%) 9 (56.25%)
Female 1 (33.33) 8 (32%) 0 1 (100%) 11 (30.56%) 2 (40%) 7 (43.75%)
Age 48.67 ± 10.1434 52.68 ± 11.4916 44.25 ± 6.2998 77 56.19 ± 11.8786 51.17 ± 10.1229 54.125 ± 11.8895

Fig. 2 Differences in Raman spectra between the gastric cancer and the non-tumor group, and the colorectal cancer and the non-tumor group.
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ithm can distinguish gastric and colorectal cancers using
serum samples.

Identification of gastric and intestinal cancer subtypes based
on Raman spectroscopy and deep learning

It is difficult for us to visually detect differences in different
degrees of differentiation or different subtypes of gastric or col-
orectal cancer by Raman spectroscopy, so we need to use artifi-

cial intelligence algorithms to assist in identification. The
accuracy of our Raman spectra using PCA-SVM, SVM,
PCA-KNN, KNN, PCA-LDA, LDA, PCA-GRU and GRU to dis-
tinguish well and moderately differentiated gastric cancer (n =
200) and poorly differentiated (n = 720) gastric cancer was
85.87%, 80.98%, 91.85%, 91.85%, 82.61%, 82.61%, 95.70%
and 95.70%. The accuracy of identifying gastric cancer of stage
I + II (n = 320) and stage III + IV (n = 590) was 75.27%, 79.67%,

Table 3 Identification results of different classification algorithms for distinguishing gastric and colorectal cancers

PCA-SVM SVM PCA-KNN KNN PCA-LDA LDA PCA-GRU GRU

GC & NT 100 100 99.48 100 98.19 84.72 100 100
CC & NT 100 100 99.22 99.74 98.70 86.46 100 100

Abbreviations: GC, gastric cancer; NT, non-tumor; and CC, colorectal cancer.

Fig. 3 The confusion matrix, ROC, training accuracy and loss values of gastrointestinal tumor spectral data identified by GRU and PCA-GRU (contri-
bution >95%).
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Table 4 Accuracy of different classification methods for identifying subtypes of gastric and colorectal cancers

PCA-SVM SVM PCA-KNN KNN PCA-LDA LDA PCA-GRU GRU

DG (%) 85.87 80.98 91.85 91.85 82.61 82.61 95.70 95.70
SG (%) 75.27 79.67 87.91 89.56 68.13 73.08 95.60 93.40
SC (%) 68.39 84.48 91.95 90.23 67.24 68.39 96.60 98.30

Abbreviations: DG, differentiation degree of gastric cancer; SG, stages of gastric cancer; and SC, stages of colorectal cancer.

Fig. 4 Confusion matrix and ROC for GRU identification of gastric and colorectal cancers with different degrees of differentiation and different
stages. (a) Confusion matrix and ROC for GRU differentiation of Raman spectra of well and moderately differentiated (n = 200) and poorly differen-
tiated (n = 720) gastric cancers. (b) Confusion matrix and ROC for GRU differentiation of Raman spectra of gastric cancers of stage I + II (n = 320)
and stage III + IV (n = 590). (c) Confusion matrix and ROC for GRU differentiation of Raman spectra of colorectal cancers of stage II (n = 250), III (n =
460), and IV (n = 160).
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87.91%, 89.56%, 68.13%, 73.08%, 95.60% and 93.40%, respect-
ively. To ensure a roughly balanced sample size between the
different kinds of colorectal cancer during the identification of
colorectal cancer subtypes, we will only differentiate between the
different stages of colorectal cancer here and regard all stages III,
IIIB, and IIIC of colorectal cancer as stage III for the purpose of
identification. The accuracy of identifying stage II, III (III + IIIB +
IIIC), and IV colorectal cancers was 68.39%, 84.48%, 91.95%,
90.23%, 67.24%, 68.39%, 96.60% and 98.30%, respectively. The
specific results are shown in Table 4. According to the results,
PCA can indeed be used as a data processing method to reduce
the amount of Raman spectral data and has little effect on the
identification results.

The GRU network showed higher accuracy than other
methods in identifying Raman spectra with small differences
and when there were more categories. The accuracy of GRU
reached more than 95% when performing detailed classifi-
cation of gastric and colorectal cancers. The confusion matrix
and ROC of spectral data for GRU and PCA-GRU to identify
gastric cancer and colorectal cancer subtypes are shown in
Fig. 4. In conclusion, Raman spectroscopy combined with an
artificial intelligence algorithm can enable us to distinguish
gastric and colorectal cancer subtypes using serum samples.

Discussion

Raman spectra can reflect the biochemical composition of bio-
logical samples and reflect the compositional differences
between gastric or colorectal cancer serum and non-tumor
serum. By analyzing the Raman spectra of gastric and colorec-
tal cancers, we found that the area of the Raman characteristic
peak near 2923 cm−1 in the serum of patients with gastric or
colorectal cancer was generally higher than that of healthy
human serum. This peak was mainly associated with C–H
peaks in lipids and proteins.

We also improved and built a GRU network for identifying
gastrointestinal cancer Raman spectral data and obtained
good identification results. Compared with machine learning
algorithms such as SVM, KNN and LDA, GRU performs well on
both binary and multi-classification problems. In distinguish-
ing gastric cancer from non-tumor and colorectal cancer from
non-tumor, the lowest accuracy of 84.72% was recognized by
ordinary machine learning methods, and SVM and GRU were
able to achieve 100% accuracy. GRU also showed good reco-
gnition ability when identifying Raman spectra of cancer sub-
types with smaller differences, with recognition accuracy
>95%. Therefore, Raman spectroscopy combined with deep
learning can enable us to distinguish gastric and colorectal
cancers, as well as to identify cancer subtypes. Besides, we also
found that PCA dimensionality reduction has little effect on
the recognition of Raman spectra by the classification algor-
ithm. The GRU-based Raman spectral recognition method is a
general spectral classification algorithm that can be applied
not only to gastrointestinal tumor early screening, but also to
other different types of spectral recognition.

Raman spectroscopy is, after all, a new technique for
optical tumor early screening, and there is no clear standard
for the interpretation of certain peaks and contents in Raman
spectra. In the present study, we only analyzed biochemical
components in gastrointestinal tumor serum samples qualitat-
ively and semi-quantitatively. In the next step, we will combine
liquid chromatography-mass spectrometry and other means to
assist in the verification of the compositional differences
reflected by Raman spectroscopy. In addition, we will also
implement and refine Raman spectroscopy-based cancer diag-
nosis using other samples such as serum and tissues.

Conclusions

We analyzed and compared Raman spectra of sera from
patients with gastrointestinal tumors with those of normal
subjects and found that gastrointestinal tumor sera exhibited
a significantly higher peak area at the C–H position at
2923 cm−1, reflecting metabolic differences in proteins and
lipids between cancer and normal sera. By combining Raman
spectroscopy with a deep learning spectral recognition model,
we have successfully achieved the early screening of gastric
cancer and colorectal cancer. Ordinary machine learning
methods have a minimum accuracy of 84.72%, while SVM and
GRU can achieve 100% accuracy. We used the improved GRU
network algorithm to successfully distinguish gastric cancers
with different degrees of differentiation and different stages,
as well as colorectal cancers with different stages, all with an
accuracy rate of more than 95%, which is difficult to achieve
with ordinary machine learning methods. Besides, we also
found that the PCA dimensionality reduction method has little
effect on the recognition accuracy of different classification
models. Overall, Raman spectroscopy can reflect the differ-
ences between gastric and colorectal cancer sera and normal
human serum, and the use of Raman spectroscopy and the
GRU network can enable the early screening of gastrointestinal
tumors as well as subtype identification.

Data availability

The code supporting the results of this study is available upon
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made publicly available due to privacy or ethical constraints.
The code can be accessed through the GitHub link (https://
github.com/Kunxiang-Liu/Raman-gastric-cancer.git).
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