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Abstract
We study the property of the many-body localization in Heisenberg Ising Chain model with
periodic driving by using the method of matrix exact diagonalization. We consider a driving
protocol in which the system’s Hamiltonian is periodically switched between two operators.
The first segment is a disordered Ising system, and acts for time T0; It is worth noting that
the Hamiltonian of the second part is an operator dependent on time, and acts for time T1,
so the driving period is T = T0 + T1. We choose excited state fidelity to observe the phase
transition between the localized phase and the ergodic phase of the system, which reflects
the property of many-body localization in Heisenberg Ising Chains under periodic driving.
Through the study, we find that when the disorder strength h is small, the system is in the
ergodic phase, periodic driving can cause the occurrence of a transition from the ergodic
phase to the localized phase, while the system is in the localized phase with a large disorder
strength h, the transition from the localized phase to the ergodic phase will occur under the
periodic driving. For these two cases, they all show that there is a critical driving period
Tc, when the driving period is greater than Tc, the system will have a phase transition,
meanwhile, Tc decreases with the increase of driving strength. Furthermore, we also get that
the system size and disorder strength also effect the critical point of the driving period. The
critical point decreases as the strength of disorder increases and decreases with the increase
of the system size.
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1 Introduction

A static disorder potential can lead to a complete absence of diffusion in a closed quan-
tum system which has received extensive attention. This is the Anderson localization [1, 2]
mentioned in Anderson’s previous articles more than half a century ago. It shows that a
static disordered potential may lead to a complete absence of diffusion in an closed quantum
system and has reached complete conclusion that non-interacting systems in one and two
dimensions will be localized for arbitrary disorder [3, 4], even for very small disorder. Until
more recently, Basko et al. [5] gave new conclusions to receive this idea of many-body local-
ization. Many features of many-body localization (MBL) have been explored [6–18]. It has
been displayed that bipartite entanglement entropy between two sectors of the system shows
a characteristic logarithmic growth in the many-body localized phase. Many-body localiza-
tion at nonzero temperature is a quantum transition, which is very important for many-body
quantum physics and statistical mechanics: it is a quantum “glass transition” [19].

Strong disorder has many functions. First of all, the tendency of infinite absorption of
energy from time-periodic driving filed in closed quantum many-body system is an obstacle
to find new non-equilibrium phase. In addition, the interaction system with strong disorder
may lead to the appearance of the MBL phase, which does not allow the transport of energy
and particles [20]. Then for the ground state of correlated system, disorder is also of great
importance and may inhibit conductance. Periodically driven systems can exhibit nontrivial
steady state even in the absence of interaction limits. In a periodically driven system, the
topological many-body states can have very long lifetimes, although it is usually metal sta-
ble [21]. Periodically driven a quantum system in time can change its long-term dynamics
and trigger topological order. Whether locally driven or globally driven, the ergodic system
is always heated to infinite temperature in the energy space [22]. Periodically driven sys-
tems retain the memory of their initial conditions for any length of time in the MBL phase
[23]. In a disordered interacting system, suppressing jump amplitude can increase the rel-
ative strength of disorder and interactions, potentially driving the transition from a static
delocalized system to a localized system [24]. Driving interacting systems are different from
non-interacting systems: the long-term behavior of non-interacting systems is described by
generalized Gibbs ensemble [25, 26]. The influence of periodic driving on ergodic system
and localized system is very different: when the ergodic system is heated to infinite tem-
perature, its Floquet eigenstate is delocalized in energy space, while localized system only
absorbs energy locally [20]. While a complete classification of non-ergodic systems remains
an open problem, it has recently established that many-body localization provides a robust
mechanism of ergodicity breaking in systems with quenched disorder [23–26]. The response
of disordered system to periodic driving provides a natural experimental probe for solid and
cold atomic systems [27–32]. The dynamics of an isolated quantum many-body system with
Hamiltonian switching periodically between disordered and non-disordered operators is the
focus of our study.

For the periodic driving, its Hamiltonian is a time-dependent periodic function, H(t +
T ) = H(t), which properties are determined by the unitary Floquet operator . If the
evolution operator over one period, the Floquet operator has the form [26],

̂F = T exp

{

−i

∫ T

0
H(t)dt

}

(1)

here T exp is a time-ordered exponential. In the eigenstate basis |Ψα〉 and the quasienergies
θα of ̂F , it can be written as ̂F = ∑D

n=1e
−iθα |Ψα〉〈Ψα|, where D is the dimension of the
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system. An effective Floquet Hamiltonian HF can be introduced, as ̂F = e−iHF T , with
same eigenstates |Ψα〉,

Through studying the properties of the Floquet eigenstates, one can identify two phase:
the localized phase [6–12], in which almost all eigenstates have area-law entanglement
entropy, and the eigenstate thermalization hypothesis is violated; the delocalized phase,
in which eigenstates have volume-law entanglement and obey the ETH [13–18]. In this
paper, we mainly research the property of the many-body localization in disordered Heisen-
berg Ising Chain with periodic driving. The model we choose is a one-dimensional istropic
Heisenberg spin -1/2 chain, and the phase transition between the ergodic phase and the local-
ized phase is observed by excited state fidelity. We consider a driving protocol in which the
system’s Hamiltonian is periodically switched between two operators. The first segment is
a disordered system, and acts for time T0, it is worth noting that the second Hamiltonian is
an operator related to the trigonometric function of time. Through observing the phase tran-
sition between the localized phase and the ergodic phase, we can see the effect of periodic
driving on the property of the many-body localization in Heisenberg Ising model and study
the behavior of this disordered system under global driving.

2 Numerical Model

We study a one-dimensional isotropic Heisenberg spin -1/2 Chain with many-body nearest
interactions, L bits, and open boundary conditions. We consider a driving procotol in which
the system’s Hamiltonian is periodically switched between two operators, H0 and H1, the
disordered Hamiltonian H0 acts for time T0 and has the form

H0 =
∑

i

hiS
z
i + Sz

i S
z
i+1 (2)

Where random filed hi is uniformly distributed in the interval [-h,h], h is disorder strength;
and the delocalizing Hamiltonian H1 we choose:

H1(t) =
∑

i

(Si · Si+1 + Sz
i ) ∗ Vo ∗ cos(ωt − π/4) (3)

which acts for time T1, hence, the driving period is T = T0 + T1. Then the Floquet operator
in our model is

̂F = T exp

{

−i

∫ T 1

0
H1(t)dt

}

e−iH0T0 . (4)

It is worth noting that Hamiltonian H1 is time-dependent. Then we want to discuss the
influence of this type periodically driving on the disordered system. We tune the strength of
the kick T1 to observe the transition between the localized phase and the ergodic phase.

3 Results and Discussion

In order to observe the phase transition between the localized phase and the ergodic phase,
we select the excited fidelity. The ground-state fidelity [33–36] per lattice site is defined as
the overlap of the first ground-state with parameter λ and λ+δλ, that is,

F0(λ, λ + δλ) = |〈ψ0(λ) | ψ0(λ + δλ)〉| (5)
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Analogously, we get the definition of the fidelity of the n-th excited state ψn(T , h) for
this periodically driven system, as the overlap between |ψn(T , h)〉 and |ψn(T , h + δh)〉 . It
is special that, here the fidelity is not defined with respect to the same parameter T [37–40],
but with respect to the disorder strength, while δh is a small shift, with the following forms:
δh = εh, let ε = 10−3.

Fn(T , h + δh) = |〈ψn(T , h) | ψn(T , h + δh)〉| (6)

It has been shown that [34] not only the ground state fidelity but also the excited state
fidelity plays an essential role. Then for each disordered implementation, we select the
many-body eigenstate |ψn〉 in the excited state in the middle segment of the energy ordered
list of all data. Because the excited states represent high-energy states, thus we look only at
excited state and avoid states that represent low-temperature. We next calculate the fidelity
Fn for each eigenstate |ψn〉 . The averaged E[F ] was obtained by averaging over all chosen
excited states and disordered realizations. The standard libraries for exact matrix diagonal-
ization are adopted for numerical analyses. For each disorder amplitude h, We used 10000
disorder realizations for N=6, 1000 disorder realizations for N=8 and N=10, 100 disorder
realizations for N=12 to yield the data illustrated in this article. Then we plot the averaged
excited state fidelity E[F ] as a function of the driving period T1, while we let T0 = 1.

From Figs. 1, 2, 3, 4 and 5, the disordered Heisenberg Ising Chain system is in the
localized phase with large disorder strength.We study the phase transition from the localized
phase to the ergodic phase. According to Figs. 1 and 2, h = 3.5 and h = 10 respectively,
it shows that the phase transition from the localized phase to the ergodic phase does occur.
It indicates that both the driving strength V0 and the disorder strength h affect the critical
point of the phase transition. According to Fig. 1, one also can get the critical point Tc: for
V0 = 10, Tc → 0.7; V0 = 20, Tc → 0.5; V0 = 30, Tc → 0.4. According to Fig. 2, for
V0 = 5, Tc → 1.5, V0 = 10, Tc → 0.8, V0 = 30, Tc → 0.5, V0 = 50, Tc → 0.3. These
datas show that the critical point Tc decreases as driving strength V0 increases, and the larger
the disorder strength, the larger the critical driving period is. In Fig. 3, we select n = 8 and
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Fig. 1 Averaged excited state fidelity as a function of driving period T1 for driving strength from 10 to 20.
The disorder strength h = 3.5, the system size is n = 6. E[F ] decays substantially under the periodic driving
until T approaches to the critical point Tc . The critical point Tc decreases as driving strength V0 increases

56 Page 4 of 10



Int J Theor Phys (2023) 62:56

T1
0.1 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

E
[F
]

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

V0=1
V0=5
V0=10
V0=20
V0=30 n=6

h=10

Fig. 2 Averaged excited state fidelity as a function of T1 for different values of driving strength from 1 to
50. The disorder strength is h = 10, the system size is n = 6. E[F ] decays substantially under the periodic
driving until T approaches to the critical point Tc . The point Tc decreases as driving strength V0 increases

h = 10 to further explore the effect of system size on the phase transition. It also shows
that the critical point Tc decreases with the driving strength increases as the previous figure.
Particularly, We can see that the system size also has influence on the phase transition. In
order to illustrate this, in Figs. 4 and 5, we further select n = 6, n = 8 and n = 10 to observe
the behavior of the system with same disorder strength and under same driving strength V0.
Both Figs. 4 and 5 all indicate that the system size does effect the critical point, the larger
the system size, the smaller the critical driving period Tc is.
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Fig. 3 Averaged excited state fidelity as a function of T1 for different values of driving strength from small to
large. The disorder strength is h = 10 and the system size is n = 8. E[F ] decays under the periodic driving
until T approaches to the critical point Tc , then E[F ] changes slowly and tents to a straight line. One can get
that E[F ] decreases with V0 increases
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Fig. 4 Averaged excited state fidelity as a function of driving period T1 for representative system size. The
disorder strength h = 10 and the driving strength V0 = 1. The system size n are indicated in the legend. E[F ]
decreases with driving period T increases until T approaches to the critical point Tc , then E[F ] changes
slowly and tends to a straight line. The larger the system size, the smaller the critical point Tc is

From Figs. 6 to 8, the disordered Heisenberg Ising Chain system is in the ergodic phase
with h = 0.5. We study the phase transition from the ergodic phase to the localized phase.
They all show that for this disordered system, the phase transition from the ergodic phase to
the localized phase also occurs under periodic driving. In Fig. 6, the system size is n = 6,
h = 0.5, we plot the excited state fidelity E[F ] as a function of driving period T1 for repre-
sentative values of driving strength V0. We then explore the effects of driving strength and
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Fig. 5 Averaged excited state fidelity as a function of driving period T1 for the value of disorder strength
h = 10, the driving strength V0 = 10. The system size n are indicated in the legend. E[F ] decreases with
driving period T increases until T approaches to the critical point Tc , then E[F ] changes slowly and tents to
a straight line. The larger the system size, the smaller the critical point Tc is
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Fig. 6 Averaged excited state fidelity as a function of driving period T1 for the disorder strength h = 0.5, the
system size is n = 6. The driving strength V0 are indicated in the legend. E[F ] decays substantially under the
periodic driving until T approaches to the critical point Tc . The critical point Tc decreases as driving strength
V0 increases

system size on the property of the many-body localizaton in this periodical driving Heisen-
berg Ising Chain. By comparing the curves, one can get the driving strength also affect the
critical point of the this phase transition. The larger the driving strength, the smaller the
critical driving period Tc is, and the faster the E[F ] decays. in Fig. 6. In Fig. 7, we select
n = 8, h = 0.5, It shows that the critical point decreases as the driving strength increases as
the previous figure. By comparing, we can get that the system size has the same effect on
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Fig. 7 Averaged excited state fidelity as a function of driving period T1 for the value of disorder strength
h = 0.5, the system size is n = 8. The driving strength V0 are indicated in the legend. When V0 is small,E[F ]
decays until T approaches to the critical point Tc , then E[F ] turns to increase approximately approaching to
a stable value; when V0 is large, E[F ] increases with driving strength increases
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Fig. 8 Averaged excited state fidelity as a function of driving period T1 for the value of disorder strength
h = 0.5, the driving strength V0 = 1. The system size n are indicated in the legend. E[F ] decreases with
driving period T increases until T approaches to the critical point Tc , then E[F ] changes slowly and tents to
a straight line. The larger the system size, the smaller E[F ] is

the critical point. In order to illustrate this, in Fig. 8, we select n = 6, n = 8 and n = 10 and
verify the conclusion that the larger the system size, the smaller the critical point is. Then
we observe the behavior of the system with same driving strength and verified the previous
conclusions.

4 Summary

In this paper, we use the exact matrix diagonalization to explore the property of the many-
body localization in disordered Heisenberg Ising Chain with periodically driving. We study
a one-dimensional isotropic Heisenberg spin -1/2 Chain with many-body nearest interac-
tions, L bits, and open boundary conditions. The Hamiltonian of the disordered system is
composed of piecewise functions, in which the Hamiltonian H0 is the disorder term and
acting for time T0. It is specially noted that the Hamiltonian is an operator related to the
trigonometric function of time, acting for T1. Through observing the excited state fidelity,
when the disorder strength h is small, the system is in the ergodic phase, periodic driving
can cause the phase transition from the ergodic phase to the localized phase; while the h

is large, the system is in the localized phase, the phase transition from the localized phase
to the ergodic phase will occur under the periodical driving, it is proved that the periodic
driving will induce the phase transition between the localized phase and the ergodic phase.
Furthermore, we also get that the system size, the disorder strength and driving strength all
effect the critical point of the driving period. The conclusion is that the larger the disorder
strength, the smaller the critical driving period is; the larger the system size, the smaller the
critical driving period is; the larger driving strength, the smaller the critical driving period
is. We hope that the present work can provide a meaningful tool for gaining a better under-
standing of the MBL transition and ergodicity breaking in quantum systems, and we will
research this interesting phenomenon further in our future work.
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