
Citation: Sun, M.; Bao, T.; Xie, D.; Lv,

H.; Si, G. Edge Collaborative Online

Task Offloading Method Based on

Reinforcement Learning. Electronics

2023, 12, 3741. https://doi.org/

10.3390/electronics12183741

Received: 22 July 2023

Revised: 30 August 2023

Accepted: 1 September 2023

Published: 5 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Edge Collaborative Online Task Offloading Method Based on
Reinforcement Learning
Ming Sun 1,2,*, Tie Bao 1, Dan Xie 1, Hengyi Lv 2 and Guoliang Si 2

1 College of Computer Science and Technology, Jilin University, Changchun 130012, China;
baotie@jlu.edu.cn (T.B.); xiedan@jlu.edu.cn (D.X.)

2 Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences,
Changchun 130033, China; lv_hengyi@163.com (H.L.); siguol@163.com (G.S.)

* Correspondence: sunm19@mails.jlu.edu.cn

Abstract: With the vigorous development of industries such as self-driving, edge intelligence, and the
industrial Internet of Things (IoT), the amount and type of data generated are unprecedentedly large,
and users’ demand for high-quality services continues to increase. Edge computing has emerged
as a new paradigm, providing storage, computing, and networking resources between traditional
cloud data centers and end devices with solid timeliness. Therefore, the resource allocation problem
in the online task offloading process is the main area of research. It is aimed at the task offloading
problem of delay-sensitive customers under capacity constraints in the online task scenario. In this
paper, a new edge collaborative online task offloading management algorithm based on the deep
reinforcement learning method OTO-DRL is designed. Based on that, a large number of simulations
are carried out on synthetic and real data sets, taking obstacle recognition and detection in unmanned
driving as a specific task and experiment. Compared with other advanced methods, OTO-DRL can
well realize the increase in the number of tasks requested by mobile terminal users in the field of
edge collaboration while guaranteeing the service quality of task requests with higher priority.

Keywords: self-driving; edge synergy; reinforcement learning

1. Introduction

With the unprecedented amount and variety of data generated, users’ demand for
high-quality services continues to increase. Edge computing is an emerging paradigm
that provides storage, computing, and network resources between traditional cloud data
centers and end devices. In edge computing, the basic infrastructure is edge nodes, includ-
ing industrial switches, controllers, routers, video surveillance cameras, and embedded
servers [1–5]. Because IoT devices are constantly generating data, analytics must be highly
time-sensitive. An important issue is to find a provisioning strategy for edge nodes that
can reduce the monetary cost of edge resources and reduce transmission delays for users.
Researchers have extensively explored resource provisioning for user workloads in most
existing studies, such as offloading computing tasks directly to individual edge nodes
or the cloud. This paper considers the task offloading problem of delay-sensitive users
under capacity constraints in the online task scenario. It focuses on the resource allocation
problem in the online task offloading process based on the edge node collaboration method.
The resource allocation problem is determining the allocation of resources on the edge node
to multiple users under user deadlines and edge node computing resources to minimize
the total cost. Collaboration means an edge node can use rented edge nodes to provide
services jointly. Our goal is to improve the cost efficiency of edge computing for network
operators while maintaining the quality of service for users.

We take the actual scenario as an example to explain the motivation of the research
problem in detail. Some of the definitions and symbolic representation methods involved
need to be clearly stated and will be explained in the follow-up problem description section.

Electronics 2023, 12, 3741. https://doi.org/10.3390/electronics12183741 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12183741
https://doi.org/10.3390/electronics12183741
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-3628-0991
https://doi.org/10.3390/electronics12183741
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12183741?type=check_update&version=2

Electronics 2023, 12, 3741 2 of 18

We specify the example with an arbitrary number n of edge nodes and m of users, and
we take n = 5 and m = 7 as the example. We assume there are five heterogeneous edge
nodes

(
v(1−5)

)
, and each edge node provides different computing resources to users. At

the same time, the computing capabilities of edge nodes are limited, and edge nodes from
different suppliers support collaborative services. We assume that within a period, the
users passing through this area are

(
u(1−7)

)
, and for each user, its connection range is

within a specific area, as shown by the gray circle in Figure 1. In this area, users can offload
tasks to corresponding edge nodes. We assume that the connection and location of the edge
node have been fixed by a third-party service provider or cloud data center, and the edge
node receives and responds to the offload request of the terminal device within the service
range and returns the result to the user after processing on the server. We assume that users
can offload tasks to their nearest edge nodes, and when the tasks are offloaded to the same
service entity, the running time on the service entity will grow linearly with the increase in
the number of loads.

Electronics 2023, 12, x FOR PEER REVIEW 2 of 18

We take the actual scenario as an example to explain the motivation of the research
problem in detail. Some of the definitions and symbolic representation methods involved
need to be clearly stated and will be explained in the follow-up problem description sec-
tion. We specify the example with an arbitrary number 𝑛 of edge nodes and 𝑚 of users,
and we take 𝑛 = 5 and 𝑚 = 7 as the example. We assume there are five heterogeneous
edge nodes ൫𝑣(ଵିହ)൯, and each edge node provides different computing resources to users.
At the same time, the computing capabilities of edge nodes are limited, and edge nodes
from different suppliers support collaborative services. We assume that within a period,
the users passing through this area are ൫𝑢(ଵି)൯, and for each user, its connection range is
within a specific area, as shown by the gray circle in Figure 1. In this area, users can offload
tasks to corresponding edge nodes. We assume that the connection and location of the
edge node have been fixed by a third-party service provider or cloud data center, and the
edge node receives and responds to the offload request of the terminal device within the
service range and returns the result to the user after processing on the server. We assume
that users can offload tasks to their nearest edge nodes, and when the tasks are offloaded
to the same service entity, the running time on the service entity will grow linearly with
the increase in the number of loads.

Figure 1. Example of motivation for online edge-cloud collaborative task offloading. (The grey area
represents the coverage range of the edge server; the dashed lines represent the movement trajecto-
ries of users).

According to the scenario above, the dynamic changes in the network caused by mo-
bile edge devices have a significant impact on the user’s choice of offloading location and
the resulting performance. We use the following example to illustrate this effect. As shown
in Figure 1, user 𝑢ସ, the user’s trajectory is from the area where edge node 𝑣ଷ, is located
to the area where 𝑣ସ is located. We assume that node 𝑣ସ has better computing power
than node 𝑣ଷ. For user 𝑢ସ, an offloading scheme is to offload the workload of user 𝑢ସ to
the edge node 𝑣ଷ at the new location. In this scheme, the cost of user 𝑢ସ is the sum of
the task processing of node 𝑣ଷ and the transmission cost of the resulting feedback after
completion. However, due to the dynamic movement of users on the edge network, as-
suming that during the task unloading process of user 𝑢ସ, user 𝑢ଷ reaches area 𝑣ଷ at the
same time and offloads the task to the edge node 𝑣ଷ. If user 𝑢ଷ has a higher task priority

Figure 1. Example of motivation for online edge-cloud collaborative task offloading. (The grey area
represents the coverage range of the edge server; the dashed lines represent the movement trajectories
of users).

According to the scenario above, the dynamic changes in the network caused by
mobile edge devices have a significant impact on the user’s choice of offloading location
and the resulting performance. We use the following example to illustrate this effect. As
shown in Figure 1, user u4, the user’s trajectory is from the area where edge node v3, is
located to the area where v4 is located. We assume that node v4 has better computing power
than node v3. For user u4, an offloading scheme is to offload the workload of user u4 to the
edge node v3 at the new location. In this scheme, the cost of user u4 is the sum of the task
processing of node v3 and the transmission cost of the resulting feedback after completion.
However, due to the dynamic movement of users on the edge network, assuming that
during the task unloading process of user u4, user u3 reaches area v3 at the same time and
offloads the task to the edge node v3. If user u3 has a higher task priority than u4 and
both users attempt to offload tasks simultaneously, it could lead to a sudden increase in
processing costs and delay for u4’s task. Another solution is to offload the workload to the
edge node v4 at the target position of the mobile trajectory. This solution can effectively

Electronics 2023, 12, 3741 3 of 18

reduce the delay of task processing, but the resulting communication overhead cannot be
ignored. Therefore, for task offloading under online mobile users, the user’s offloading
location must be considered, and the network dynamic changes caused by device mobility
must be considered comprehensively.

In this paper, we research the problem of online task offloading in the mobile scenario
of multiple users, which is an original proposal. We jointly optimize user request task delay
and energy consumption, and we consider a more realistic and complex scenario on this
basis, that is, multi-user mobility.

Our problem poses the following unique challenges: (1) Due to the limited and
heterogeneous computing power of edge nodes, when several groups of users arrive with
workloads of different sizes, finding a feasible task offloading strategy can be accomplished.
It is a challenging task to complete the workload for the user within the deadline. (2) In
this paper’s definition of the problem scenario, end users are mobile, and their action
trajectories are random and time-varying. During the movement process, edge nodes can
connect with some users, and users must offload their workload to the edge located in their
effective area. It takes work to quickly feedback the processing results of requests to mobile
users simultaneously. (3) The collaborative work of edge nodes can reduce the delay for
users, but the communication cost may increase. It is not trivial to achieve efficient edge
resource allocation while satisfying multiple mobile user requests with minimal cost to
balance the trade-off between cost and latency.

This paper focuses on the online task offloading problem in the edge collaboration
scenario and realizes the joint optimization of mobile user delay and energy consumption
under capacity and computing power constraints. The main contributions of this paper are
as follows:

(1) This paper discusses the problem of online task offloading for multiple mobile users
and mainly studies the scenario of edge nodes working together in mobile edge
computing. On this basis, a reward evaluation method based on deep reinforcement
learning is proposed to realize the online tasks of multiple mobile users. Task offload-
ing jointly optimizes overall latency and energy consumption under the constraints of
edge physical resources.

(2) According to the characteristics of user mobility, a trajectory prediction method based
on multi-user movement is designed to reduce the delay caused by user mobility.
On this basis, centering on the task request user, a task optimization scheduling
mechanism based on task multi-dimensional characteristics and marginal resource
conditions is proposed, which avoids invalid states in the decision-making mod-
ule and approximates the policy in the decision-making module according to the
introduced feasibility mechanism.

(3) Finally, we conduct experiments based on synthetic and natural simulation datasets.
We compare the proposed joint optimization method with several state-of-the-art
methods in the synthetic simulation dataset section. We also evaluate the experimental
results from different perspectives to provide corresponding conclusions. On this
basis, we take obstacle detection and recognition in unmanned driving as a specific
task and further verify the effectiveness of the proposed method based on real data
sets. The experimental results show that the scheme can well realize the increase in
the number of tasks requested by mobile terminal users in the edge collaborative
service area and simultaneously guarantee the service quality of task requests with
higher priority.

2. Related Work

In order to effectively coordinate computing resources in the end-edge-cloud col-
laborative computing paradigm and free mobile devices from limited computing power
and energy supply, both the industry and academia regard computing offloading as a
promising solution. Computing offloading is one of the hot research issues in the field
of mobile edge computing. Many researchers have also performed much exploration on

Electronics 2023, 12, 3741 4 of 18

this issue. In the existing research, mobile edge computing application algorithms with
different theoretical characteristics have been proposed. In computing offload for mobile
edge computing, we must address two main related problems. The first is deciding when
to offload computing tasks from devices to servers for processing; the second is how to allo-
cate server resources to meet user needs reasonably. In order to solve the above problems,
some existing works have proposed models and algorithms based on different optimization
objectives. Mukherjee et al. [6] considered the transmission delay and service rate from fog
to cloud, and jointly optimized the number of tasks offloaded to adjacent fog nodes and
the allocation of communication resources offloaded to remote cloud through semi-definite
relaxation. Sarkar et al. [7] used the task classification strategy to propose a dynamic task
allocation strategy to allocate the required tasks, minimize the delay, and meet the deadline.
Yang et al. [8] proposed a feed-forward neural network model based on multi-task learning
to solve binary offloading decision-making and computing resource allocation problems
effectively. This method transforms the original problem into a mixed-integer nonlinear
programming problem and uses the MTFNN model trained offline to derive the optimal
solution. Compared with traditional optimization algorithms, this method has a lower
computational cost and is significantly better than traditional methods in terms of com-
putational time and inference accuracy. Zhan et al. [9–11] considered the mobility in the
process of task offloading in the computational offloading problem, converted the original
global optimization problem into multiple local optimization problems, and proposed a
heuristic mobile perceptual offloading algorithm used to obtain an approximate optimal
offloading scheme. Zhou et al. [12] proposed a reliability stochastic optimization model
based on dynamic programming to deal with the dynamic and stochastic characteristics
of the vehicle network and ensure the reliability of vehicle computing offloading. At the
same time, they also proposed an optimal data transmission scheduling mechanism that
considers the randomness of vehicular infrastructure communication and can maximize
the lower bound.

In addition to the above work, in consideration of energy consumption, there are
various solutions to the task offloading problem in different environments and scenarios.
Under delay constraints, Zhang et al. [13] designed an energy offloading strategy using
the artificial fish swarm algorithm, which considers link conditions and effectively reduces
device energy consumption. However, the algorithm complexity is high. In a multi-resource
environment, Xu et al. [14] proposed an energy-minimized particle swarm task scheduling
algorithm to match multiple resources and reduce the energy consumption of edge terminal
devices. Wei et al. [15–17] divided the task offloading problem into mobile management
problems and energy saving problems and used a greedy algorithm to minimize the energy
consumption of mobile devices. Lu et al. [18] provided an efficient resource allocation
scheme to minimize the total cost of multiple mobile users by considering three different
cases. Yu et al. [19] studied the problem of task offloading in ultra-dense network scenarios.
They proposed a task offloading algorithm based on Lyapunov optimization theory that
effectively reduces the total energy consumption of base stations. Aiming at the problems
of high energy consumption and computing power that mobile social platforms may
cause, Guo et al. [20] proposed an energy consumption optimization model based on the
Markov decision process, which considers the network status of different environments
and dynamically selects the best network. Access and refresh downloads in the best image
format to reduce power consumption. In order to solve the privacy leakage problem that
may occur in offloading decisions, Liu et al. [21] studied the offloading problem based on
deep learning. They proposed a deep learning-based offloading algorithm group sparse
beamforming framework to optimize network power consumption. These task offloading
decisions have achieved the purpose of reducing the delay time. However, they do not
consider the impact of the energy consumption of the terminal device during the task
offloading calculation process, and the terminal device may not be able to operate normally
due to insufficient power.

Electronics 2023, 12, 3741 5 of 18

Some researchers jointly proposed related solutions to the problem of joint optimiza-
tion of delay and energy consumption. Gao et al. [22] proposed a joint computing offloading
and priority task scheduling scheme in mobile edge computing that uses a dynamic priority
level task scheduling algorithm while considering the urgency of the task and the idleness
of the edge server. This can reduce the task completion time and improve the service
quality by assigning the task to the edge server. Kim et al. [23] established the problem
as a linear integer optimization problem to optimize delay and resource costs. This paper
introduces a system, MoDEMS, that optimizes the deployment of edge computing based
on user mobility, and proposes a Seq-Greedy heuristic algorithm to generate a migration
plan that minimizes system cost and user delay. Ale et al. [24] proposed an end-to-end deep
reinforcement learning method to offload services to the best edge server and allocate the
optimal computing resources to maximize the completion of tasks before their respective
deadlines and minimize energy consumption. Hazra et al. [25] proposed a heuristic-based
transmission scheduling strategy that transmits according to the importance of the gener-
ated task. A graph-based task offloading strategy is introduced, which uses constrained
mixed linear programming to deal with high traffic in peak-period scenarios while main-
taining energy and delay constraints. Zhang et al. [26] considered the effect of task priority
on task offloading when solving the offloading decision problem. In order to better meet
user needs, they proposed a method based on the importance model, which considered the
differences between different user tasks. They combined the maximum constraint delay
of completing the task and the size of computing resources required to complete the task.
As the two main factors of task importance, the characteristics of the task are considered
comprehensively. Yu et al. [27–29] integrated mobility prediction in offload strategy and
resource allocation methods, combining offload strategy and mobility management mod-
ules. This method can intelligently allocate tasks according to the user’s mobile mode to
allocate tasks to locations with better network conditions in the future as much as possible
to reduce energy consumption. From the above work, the individual differences of the
task determine its importance, which is determined by the size of the required computing
resources and the maximum tolerant delay. At the same time, user mobility is closely
related to service quality. Frequent movement may cause the terminal device to leave the
service range of the server, thereby interrupting the service. In addition, when offloading
tasks are forwarded between different servers, a considerable transmission delay will be
generated, resulting in an untimely service response and poor effect. Therefore, in this
section, when solving the offloading problem of online task computing, multi-user mobility
and task characteristic differences are considered comprehensively.

3. Problem Description

In the context of mobile edge computing, the third section delves into the compre-
hensive exploration of the system’s intricate mechanisms. This section, divided into three
subsections, expounds on the nuances of the system model, transfer model, and computa-
tional model.

3.1. System Model

In this subsection, the mobile edge computing system adopts the three-layer architec-
ture of cloud, edge, and terminal. We assume that the set of edge nodes in a specific activity
area is M =

{
mj
}

. These edge nodes are connected to a base station with limited computing
power and storage capacity. We use the set U = {ui} to denote mobile users served by
edge nodes. The mobility of end users is described by the set

{
ur

i , ud
i

}
, ur

i represents the

mobile rate of the end user; ud
i represents the direction of movement of the end user. In

order to better capture the movement of each user, the system is assumed to operate in
period slots, which are discretized into a time series t ∈ T = {0, 1, 2, . . . T} [15,30]. The
trajectories of the terminal devices will be dynamically updated at the beginning of each
time slot. Here we use V to represent the task request set, V = {vi}, where |vi| represents
the size of task vi, that is, the number of bits contained. We assume that at the beginning of

Electronics 2023, 12, 3741 6 of 18

each time slot t ∈ T, an end user ui ∈ U will generate an indivisible task vi, and each end
user with mobility sends a task request to the edge node. Here we use xij(t) = 1 to indicate
that user ui offloads task vi to edge server mj at time t. Otherwise, xij(t) = 0. For each
edge node, use Vmj to represent the task request set placed on the edge server mj, where
Vmj =

{
vi
∣∣mj ← vi

}
.

3.2. Transfer Model

This section presents a transfer model for user task offloading to edge nodes. Here,
we define the transmission rate of the offload link as rui ,mj , and the transmission power as
p
(
ui, mj

)
. The specific calculation method is shown in Formula (1).

rui ,mk = W × log2

(
1 +
|hm,s|

σ2

2
× p(ui, mj)

)
(1)

Here we use |hm,s|2 to denote the channel gain between users ui and mj, σ2 to denote

the noise power, and let p
(

uk
i , mk

)
denote the transmission from ui to device mj power.

3.3. Computational Model

This section defines computing models for end users and edge servers, respectively.
For end users, define two local computing and task offloading queues, respectively. For
the starting moment of the t time slot, the length of the computing queue is represented by
lc
ui
(t), and the unloading queue is represented by lt

ui
(t), indicating that the queue length

is represented by
∣∣∣lt

ui
(t)
∣∣∣, and this paper reflects the load condition through the length of

the queue. For each end user, we define its processor parameters as follows: f c
ui

represents
the CPU frequency of the end user ui ∈ U processor, that is, the computing power of the
terminal device ui, and pw

ui
and pc

ui
represent the standby power and computing power

of the device’s ui processor. The standby power is used to calculate the standby capacity
loss in the process of waiting for the unloading result, and the calculation power is used to
calculate the energy consumption required to process task vi, and the two are used for the
total benefit evaluation. For the server side, we assume that each edge server has a task
queue for processing tasks offloaded to the server, and here a first-in-first-out scheduling
method is adopted. lv

mj
(t) indicates the queue at the beginning of the t th time slot of

the task queue, where the queue length is represented by
∣∣∣lv

mj
(t)
∣∣∣, which is used to reflect

the server’s load. At the beginning of each time slot, the server node will broadcast the
load condition of the task queue to all terminal devices in the service area for the terminal
devices to make unloading decisions. Here we use f c

mj
to represent the computing power

of the server node mj ∈ M, that is, the CPU frequency of the edge service node processor.
Here, we define the edge servers in the area that can offload services for user systems

as S, and mj ∈ M is satisfied for ∀mj ∈ S. We use rmj to represent the service radius
of edge server mj. We evaluate the process through the delayed income for the user’s
task offloading delay. The terminal device ui must first determine that there are feasible
nodes in the server set that can provide offloading services under the current location.
The task cannot be offloaded to the edge side if there is no feasible node. The process of
constructing the feasible edge node set S is as follows: (1) Select mj ∈ M, and calculate
the distance d(pui , pmj) between the end user ui and the edge server mj based on their
current locations. (2) Compare the service radius rmj of the edge server with the distance
d(pui , pmj). If d(pui , pmj) ≤ rmj , then add mj into the feasible set S. (3) Repeat the above
steps until all edge nodes in the set M are traversed. Based on the feasible edge node set S
constructed above, a delay calculation is performed on all edge nodes in S, respectively.
The terminal device ui generates a task vi(t) at the beginning of the t ∈ T time slot, and the
task size is |vi(t)|.

Electronics 2023, 12, 3741 7 of 18

3.3.1. Execute on the Local Device

We define Dl
ui

as the local execution delay of task vi of end-user ui. The specific
calculation method is shown in Formula (2):

Dl
ui
(t) = ∑

|lc
ui
(t)|

vi∈Vmj
|vi(t)|/ f c

ui
(2)

The length of the t slot calculation queue is lt
mj
(t), and the processing capability of the

mobile terminal equipment is f c
ui

.
We define El

ui
(t) as the energy consumption of tasks executed locally, and the specific

calculation method is shown in Formula (3):

El
ui
(t) = f c

ui
× Dl

ui
(t) (3)

Among them, Dl
ui
(t) is the local processing delay calculated by the Formula (2), and

f c
ui

indicates the computing capability of the mobile terminal device ui.

3.3.2. Offload Processing Delay

We define de
ui
(t) to represent the execution delay of the task on the server, where the

length of the unloading queue of the edge server mj is lt
mj
(t), and the specific calculation is

as shown in Formula (4):

de
ui
(t) = ∑

|lt
mj
(t)|

vi∈Vmj
|vi(t)|/ f c

mj
(4)

On this basis, we define the delay of task transmission,

dt
ui
(t) = ∑

|lt
mj
(t)|

vi∈Vmj
|vi(t)|/rui ,mk (5)

Here, we define De
ui
(t) to represent the total delay of task unloading. Usually, the

magnitude of returned result data after task processing is small, so this paper does not
consider the calculation time delay, and the transmission time of the returned result is
delayed. Therefore, we have the following:

De
ui
(t) = de

ui
(t) + dt

ui
(t) (6)

In order to facilitate the location decision of the end user during the unloading process,
this section measures it by defining the delayed benefit, here we use D∆ to express it, and
the specific calculation method is shown in Formula (7):

D∆(t) = Dl
ui
(t)− De

ui
(t) (7)

We define ee
ui
(t) as the energy consumption of tasks offloaded to the server, where

σui represents the standby energy consumption of the terminal ui waiting for the data
processing results, and de

ui
(t) represents the execution delay on the server, so the calculation

method of ee
ui
(t) is shown in Formula (8):

ee
ui
(t) = σui × de

ui
(t) (8)

We define et
ui
(t) as the energy consumption of tasks transmitted to the offload server,

and the specific calculation method is shown in Formula (9):

et
ui
(t) = p

(
uk

i , mk

)
× dt

ui
(t) (9)

Electronics 2023, 12, 3741 8 of 18

Therefore, the total energy consumption of tasks offloaded to the edge server is Ee
ui
(t),

and the specific calculation formula is shown in (10):

Ee
ui
(t) = ee

ui
(t) + et

ui
(t) (10)

Here, we define the energy consumption benefit from measuring it, and we express it
as E∆, and the specific calculation method is shown in Formula (11):

E∆(t) = El
ui
(t)− Ee

ui
(t) (11)

In order to balance the relationship between delay and energy consumption, we define
the variable ε ∈ [0, 1] to represent the preference factor, which determines whether the
optimization goal is more inclined to reduce delay or reduce energy consumption. Ψ(t)
represents the total benefit evaluation result. The specific calculation method is shown in
Formula (12).

Ψ(t) = ε× D∆(t) + (1− ε)× E∆(t) (12)

In this paper, we mainly study the problem of online task offloading in the edge
collaborative operation scenario. With the optimization goal of maximizing revenue under
limited resources, a new online task offloading method based on deep reinforcement
learning is proposed. Optimizing total revenue is subject to cost constraints.

maximize
T

∑
t=0

|M|

∑
j=1

|U|

∑
i=1

Ψ(t) (13)

s.t.
∣∣∣lc

ui
(t)
∣∣∣≤ τ, |l t

mj
(t)
∣∣∣≤ Γ, ∀mj ∈ M (14)

xij(t) ∈ {0, 1}, ∀ui ∈ U, ∀mj ∈ M (15)

Among them, the Formula (13) is the optimization objective, and the Formulas (14)
and (15) are the constraints. Formula (14) is a physical resource constraint, which means
that the computing resource queue provided by the terminal device cannot exceed the
threshold τ, and, at the same time, the computing resource queue provided by the edge
server cannot exceed the threshold Γ. Formula (15) shows the user ui whether to use service
mj at time slot t.

4. Edge Collaborative Online Task Offloading Strategy Based on Deep
Reinforcement Learning

In order to minimize the total delay of the current user set over a continuous period,
a novel decentralized dynamic service facility management framework based on deep
reinforcement learning is designed in this section to achieve lower latency under physical
resource and cost constraints.

4.1. Overall Policy Framework

In this subsection, a novel edge online task offloading based on deep reinforcement
learning (OTO-DRL) management framework based on deep reinforcement learning is
designed to achieve higher overall profit under physical resource and cost constraints.
Figure 2 shows the overall structure of the OTO-DRL framework.

Since the decision-making process in online task offloading is a stochastic optimization
process, this section studies the framework based on the deep deterministic policy gradient
(DDPG) algorithm. In order to concisely and accurately describe the current environment
and state space, we need to consider the task workload distribution on the edge servers and
the states they provide to users. Therefore, we design the state and action spaces, reward
functions, and state transition strategies in the reinforcement learning framework. The
definition of the reinforcement learning design is shown below.

Electronics 2023, 12, 3741 9 of 18Electronics 2023, 12, x FOR PEER REVIEW 9 of 18

Figure 2. The overall structure of the OTO-DRL framework.

Since the decision-making process in online task offloading is a stochastic optimiza-
tion process, this section studies the framework based on the deep deterministic policy
gradient (DDPG) algorithm. In order to concisely and accurately describe the current en-
vironment and state space, we need to consider the task workload distribution on the edge
servers and the states they provide to users. Therefore, we design the state and action
spaces, reward functions, and state transition strategies in the reinforcement learning
framework. The definition of the reinforcement learning design is shown below.

Definition 1 (State Space). The state space describes the current environmental state of the mobile
edge network, and it is a vector defined as 𝑠௧ = [𝒗ෝ௧, 𝒑௧, 𝒓ො௧]. 𝒗ෝ௧ = (𝑣ଵ(𝑡), 𝑣ଶ(𝑡), … , 𝑣(𝑡), …) rep-
resents the task offloading sizes the terminal devices send to the server node in the 𝑡-th time slot.
For each terminal device, when 𝑢 does not send an offloading request to an edge server at the
beginning of the 𝑡 -th time slot, the value of 𝑣(𝑡) = 0 . In that case, the set 𝒑௧ ={𝑝ଵ(𝑡), 𝑝ଶ(𝑡), … , 𝑝(𝑡) … } corresponding to the revenue of 𝑣(𝑡) in 𝒗ෝ௧ is the priority set of the
offloading tasks that the terminal device sends to the edge server at the beginning of the 𝑡-th time
slot. If the terminal device 𝑢 does not send an offloading request to a server node 𝑚 ∈ 𝑀 at the
beginning of the 𝑡-th time slot, the value of the element at the corresponding position of 𝑢 in the
set 𝑝(𝑡) is 0; otherwise, the value is equal to the priority of the offloading task. In the state space 𝑠௧, the remaining computing resources of the edge server at the beginning of the 𝑡-th time slot are
represented by 𝒓ො௧.

Definition 2 (Action Space). The action space describes the behavioral decisions of the agent,
denoted as 𝑎௧ = [𝒎ෝ ଵ, 𝒎ෝ ଶ, … , 𝒎ෝ , … , 𝒎ෝ]௧ , which represents the migration strategy of tasks in
time slot 𝑡. 𝒎ෝ = [𝑚ෝ(𝑡)ି, 𝑚ෝ(𝑡)ା] represents the range of selection of edge servers during the
migration process of task 𝑣 in time slot 𝑡. Here, 𝑚ෝ(𝑡)ି ∈ {0,1}, where 0 indicates local execu-
tion, and 1 indicates offloading to the currently connected edge server. For each service, the optional
edge servers are represented by a range of consecutive edge server numbers [𝑚ෝ(𝑡)ି, 𝑚ෝ(𝑡)ା],
where 𝑚ෝ(𝑡)ି represents the minimum number of edge servers that can be selected during task
migration, and 𝑚ෝ(𝑡)ା represents the maximum number of collaborating edge servers.

Since the problem we study here is an online learning process, the value of the reward
cannot directly determine the final total profit of multiple mobile users in each time slot.
Taking the 𝑡-th time slot as an example, the reward for completing a task considers cur-
rent and future states. We define the essential reward value as 𝜀௩, and the reward for
completing a single task is the product of the fundamental reward value and the task pri-
ority. Taking task 𝑣 generated by terminal device 𝑢 at the beginning of the t-th time slot
as an example, the reward value that can be obtained by completing 𝑣 is as follows: 𝑅௩(𝑡) = 𝜀௩ × 𝑝(𝑡) (16)

Figure 2. The overall structure of the OTO-DRL framework.

Definition 1 (State Space). The state space describes the current environmental state of the mobile
edge network, and it is a vector defined as st = [v̂t, pt, r̂t]. v̂t = (v1(t), v2(t), . . . , vi(t), . . .) repre-
sents the task offloading sizes the terminal devices send to the server node in the t-th time slot. For
each terminal device, when ui does not send an offloading request to an edge server at the beginning
of the t-th time slot, the value of vi(t) = 0. In that case, the set pt = {p1(t), p2(t), . . . , pi(t) . . .}
corresponding to the revenue of vi(t) in v̂t is the priority set of the offloading tasks that the terminal
device sends to the edge server at the beginning of the t-th time slot. If the terminal device ui does
not send an offloading request to a server node mj ∈ M at the beginning of the t-th time slot, the
value of the element at the corresponding position of ui in the set pi(t) is 0; otherwise, the value is
equal to the priority of the offloading task. In the state space st, the remaining computing resources
of the edge server at the beginning of the t-th time slot are represented by r̂t.

Definition 2 (Action Space). The action space describes the behavioral decisions of the agent,
denoted as at = [m̂1, m̂2, . . . , m̂h, . . . , m̂n]t, which represents the migration strategy of tasks in

time slot t. m̂h =
[
m̂h(t)

−, m̂h(t)
+
]

represents the range of selection of edge servers during the

migration process of task vh in time slot t. Here, m̂h(t)
− ∈ {0, 1}, where 0 indicates local execution,

and 1 indicates offloading to the currently connected edge server. For each service, the optional edge
servers are represented by a range of consecutive edge server numbers

[
m̂h(t)

−, m̂h(t)
+
]
, where

m̂h(t)
− represents the minimum number of edge servers that can be selected during task migration,

and m̂h(t)
+ represents the maximum number of collaborating edge servers.

Since the problem we study here is an online learning process, the value of the reward
cannot directly determine the final total profit of multiple mobile users in each time slot.
Taking the t-th time slot as an example, the reward for completing a task considers current
and future states. We define the essential reward value as εvi , and the reward for completing
a single task is the product of the fundamental reward value and the task priority. Taking
task vi generated by terminal device ui at the beginning of the t-th time slot as an example,
the reward value that can be obtained by completing vi is as follows:

Rvi (t) = εvi × pi(t) (16)

For an edge server mj during a time slot, we define the variable Rmj(t) as the instanta-
neous profit, which is the total reward the edge server can obtain after completing multiple
tasks. We define the set lv

mj
(t) as the task queue of server node mj at the beginning of the

t-th time slot. Assuming that server node mj completes tasks with indices 1 to n in the
task queue during the t-th time slot. The formula for calculating the instantaneous profit is
as follows:

Rmj(t) =
n

∑
i=1

lvi
mj(t)pi(t)× εvi (17)

Electronics 2023, 12, 3741 10 of 18

We define the variable R̂mj(t) as the expected future profit, which is the reward that
can be obtained from the offloading requests that arrive at server node mj at the beginning
of time slot t, in the future. Here, we define ωvi ∈ {0, 1} as whether to process task vi, and
the specific calculation formula is as follows:

R̂mj(t) =

lv
mj
(t)

∑
i=1

Rvi (t)×ωvi (t) (18)

We define the variable Rmj(t) as the expected future loss, which is the total reward
value of rejecting offloading tasks after the offloading scheduling at server node mj at the
beginning of time slot t. The calculation formula is as follows:

Rmj(t) =

lv
mj
(t)

∑
i=1

Rvi (t)× (1−ωvi (t)) (19)

Definition 3 (Reward). The reward value is determined by the above multiple variables, consider-
ing the current profit of the edge server, as well as the expected future profit and loss after performing
offloading scheduling operations. The reward is defined as shown in (20).

R(t) = Rmj(t) + R̂mj(t) + Rmj(t) (20)

4.2. Load Balancing-Based Multi-Task Offloading Conflict Resolution Mechanism

This paper aims to minimize the total profit while enabling multiple mobile users
to perform online task offloading. For each user’s task offloading request, the decision
depends on observing the mobile edge network environment from their respective per-
spectives during each training process. However, the mobile edge computing system has
no prior knowledge, meaning each service needs to know the size of the user’s data or
trajectory. At the same time, the entire process is online and model-free, and multiple
users move irregularly and independently during the learning process. Therefore, when
the trajectories of multiple users are similar or overlap in the learning process, resource
allocation imbalance is prone to occur in the coverage positions of multiple edge servers,
increasing computation delay in some areas and decreasing user service quality. In order
to maintain the performance of edge network services, this paper analyzes the closely
coupled relationship between the activity trajectories of terminal users and edge resource
load balancing. It proposes a multi-task offloading conflict resolution mechanism based on
edge network load balancing.

We propose a new multi-task offloading conflict resolution mechanism in the decision-
making module to avoid invalid states and approximate policies. Our solution mechanism
includes two main stages: one is to find edge servers and service requests with uneven
load distribution, and the other is to make collaborative job decisions for high-load edge
nodes. Algorithm 1 describes the service placement problem, with the input being action
at and time slot t, and the output being the updated service placement strategy. In this
process, the algorithm also enables a conflict resolution mechanism to ensure that the
service placement for edge servers can be effectively implemented. Based on the decision at
given by reinforcement learning under the current time slot, we first perform pre-offloading
according to the task requests under each user’s predicted trajectory and then check the
status of each edge server. If the number of tasks on an edge server exceeds its queue
capacity after pre-offloading, it indicates that the server is congested and may cause task-
offloading conflicts; otherwise, it indicates that all services offloaded to that server can
be completed. Based on the above analysis, we begin to make offloading decisions. For
congested edge servers, we first construct the latest task conflict set Cmj =

{
v

mj
i

}
on that

server, which consists of all tasks that request to be executed on service mj simultaneously.

Electronics 2023, 12, 3741 11 of 18

Then, we select the task vi with the maximum profit value in the conflict set Cmj for
processing until the number of tasks reaches the queue threshold and update the set
Cmj = Cmj /vi.

Definition 4 (Collaboration factor). δ(mk) represents the collaboration factor of the adjacent
node mk to edge server mj at time slot t, defined as shown in Formula (21):

δ(mk)(t) = d(pmj , pmk) + µ|lt
mk
(t)| (21)

For the tasks that have not been processed in the set, we define the collaboration factor based
on the node connectivity in the edge network. The core idea is to allocate tasks based on the
distanced(pmj , pmk)between adjacent edge nodes and the queue length|lt

mk
(t)|, whereµis a tuning

parameter. For the edge nodes determined to be collaborative jobs, the results will be returned to the
edge servermjafter completion and then fed back to the terminal users.

Algorithm 1. Load Balancing-Based Multi-Task Offloading Task Conflict Resolution Method (TCR)

Input: The action at time slot t
Output: The updated action at of tasks offloading decisions under the conflict edge servers;
1 for each user vi ∈ Vdo
2 Pre-offloading according to at;
3 for each edge server mj ∈ M do
4 Calculate the total number of tasks in |lt

mj
(t)| pre− offloading to mj;

5 if |lt
mj
(t)| > Γmj do

6 Construct conflict set Cmj =
{

v
mj

i

}
;

7 Choose task vi with maximum Rvi (t);
8 Update set Cmj = Cmj /vi;
9 for each task vk ∈ Cmj do
10 Update set M = M/mj;
11 Select the edge server with minimum δ(mk)(t) in set M
12 end for
13 Record current state a′t and update at = a′t;
14 else
15 Keep the original decisions of action at;
16 end if
17 end for

4.3. Online Task Offloading Strategy Based on Deep Reinforcement Learning

This section proposes a dynamic service placement strategy based on deep reinforce-
ment learning. Based on the characteristics of the decision-making process, we investigate
a solution based on the deep deterministic policy gradient (DDPG) algorithm. The main
idea is to use a deep reinforcement learning agent to perform dynamic service placement
for multiple mobile users to minimize the total delay. The specific steps are shown in
Algorithm 2.

Electronics 2023, 12, 3741 12 of 18

Algorithm 2. Online Task Offloading based on Deep Reinforcement Learning (OTO-DRL)

Input: Sets of edge nodes M, services V, and users U;
Output: Dynamic service placement scheme X;
1 Randomly initialize the actor network µ(s|θµ) and critic network Q

(
s, α
∣∣θQ) with weight

θµ and θQ;
2 Initialize the target networks with weights θµ′ ← θµ and θQ′ ← θQ;
3 Initialize replay buffer B;
4 for episodes from 1 to k do
5 Initialize environmental parameters for edge servers and users, and generate an initial

state s1;
6 for each time slot t from 1 to T do
7 Select an action at = µ(st|θµ) + δt to determine the destination of migration by

running the current policy network θµ and exploration noise δt;
8 Detect migration conflicts and resolve via Algorithm 1;
9 Execute action at of each user agent independently, and observe reward rt and new

state st+1 from the environment;
10 Store the transition tuple (st, at, rt, st+1) into replay buffer B;
11 Randomly sample a mini-batch of I transitions {(st, at, rt, st+1)} from replay

buffer B;
12 Update the critic network Q

(
s, α
∣∣θQ) by minimizing the loss function L in

Equation (16);
13 Update the actor network µ(s|θµ) by using the sampled policy gradient ∇θµ J in

Equation (17);
14 Update the target networks : θµ′ ← τθµ + (1− τ)θµ′ , θQ′ ← τθQ + (1− τ)θQ′ ;
15 end for
16 end for

We use sets of edge nodes, services, and users as input and output of a dynamic
service placement policy. We initialize the preliminary parameters of the reinforcement
learning agent, including the main network, target network, and replay buffer, and begin
training. Each edge server independently determines the placement strategy of services
(migration or maintaining the original position) through training. We begin by initializing
the environment parameters for the edge servers and users, generating an initial state,
and starting the training process for a time slot. For each time slot, we select the action
value of the current state by running the current decision network θµ and variance δt,
which determines the target migration position of each service as at = µ(st|θµ) + δt. Since
user mobility is unstable and autonomous, we detect and resolve any migration conflicts
based on Algorithm 2. We execute the action value at for each user agent and observe the
reward value and new state from the environment. We then store the state transition tuple
(st, at, rt, st+1) of the relevant information in the buffer. The actor and critic networks will
be updated based on the value of the mini-batch. The critic network is updated, taking the
state and action space as inputs and outputs of the action decision value [30]. Specifically,
the critic network approximates the action-value function Q

(
s, α
∣∣θQ) by minimizing the

loss function shown in Formula (22):

L =
1
I

I

∑
ω=1

(rω + γQ′
(

s′ω, α′
∣∣∣θQ′

)
−Q

(
sω, α

∣∣∣θQ
)
) (22)

For the actor network, it represents the policy parameterized by θ, which uses stochas-
tic gradient ascent to maximize ∇θµ J, as shown in Formula (16):

∇θµ J ≈ 1
I

I

∑
ω=1
∇αQ′

(
sω, α

∣∣∣θQ
)
|α = αω∇θµµ(sω |θµ) (23)

Finally, the target network is updated by θµ′ ← τθµ + (1− τ)θµ′ and θQ′ ← τθQ+

(1− τ)θQ′ .

Electronics 2023, 12, 3741 13 of 18

5. Evaluation of Experiments

In this paper, we conducted extensive simulations and experiments to study the online
task offloading problem among multiple mobile users. We developed a Python framework,
including constructing the edge network and handling requests from multiple mobile users.
Based on this, we conducted extensive simulations and experiments with obstacle detection
and recognition as the specific task in the unmanned driving scenario to study the online
task offloading problem among multiple mobile users. After presenting the dataset and
experimental settings, we analyzed and presented the results from different perspectives.

5.1. Basic Settings of the Experimental Environment

In this subsection, the experiments were conducted in an area with a range of 500 square
meters, with 10 mobile edge servers set up within the area. Each edge server’s computing
capacity range was set from 10 GHz to 15 GHz. The bandwidth between each pair of
edge servers was 0.2 GHz, and the transmission power was set to 0.5 W. To analyze the
overall revenue for multiple mobile users, we grouped the users into 20, 30, and 40 to
construct synthetic datasets. For each group of users, it was assumed that they would send
uninterrupted requests for continuous time periods, and the task request data size was
randomly varied within the range of [0.1 GB, 0.5 GB]. The hyperparameters were set as
shown in Table 1 during the experimental process.

Table 1. Simulation parameter settings.

Hyperparameters Value

Actor network learning rate 0.001
Critic network learning rate 0.002

Reward discount factor γ 0.9
Soft replacement value τ 0.01

Response storage 200

In addition to the online task offloading algorithm proposed in this section, four
baseline algorithms were used as comparison methods, and experiments were conducted
on the algorithm under different grouping conditions. The specific comparison algorithms
are as follows:

(1) Online task offloading on local devices (OTO-LD): We iteratively offload user-generated
tasks on local devices.

(2) Online task offloading on edge nodes (OTO-EN): We iteratively offload user-generated
tasks on directly connected edge nodes.

(3) Online task offloading with no cooperation (OTO-NC): We iteratively offload tasks to
edge nodes, and in the iterative process, if the edge node is overloaded, the task is
returned to be executed locally.

(4) Online task offloading with shortest distance (OTO-SD): We iteratively offload tasks
to edge nodes, and in the iterative process, if the edge node is overloaded, the node
closest to the edge node is selected to execute the task.

5.2. Convergence Evaluation

The previous section validated the obstacle detection and recognition algorithm that
requires edge computing. In this section, we studied the algorithm’s convergence under
obstacle detection and recognition for mobile users in three different group sizes. The num-
ber of users in each group was 20, 30, and 40, respectively, and each user had 20 trajectories
in a period. The results are shown in Figures 3–7. A black dashed line is used to describe
the trend of delayed convergence, and it can be seen that the algorithm converges.

Electronics 2023, 12, 3741 14 of 18Electronics 2023, 12, x FOR PEER REVIEW 14 of 18

Figure 3. Convergence of total revenue for 20 users.

Figure 4. Convergence of total revenue for 30 users.

Figure 5. Convergence of total revenue for 40 users.

Figure 3. Convergence of total revenue for 20 users.

Electronics 2023, 12, x FOR PEER REVIEW 14 of 18

Figure 3. Convergence of total revenue for 20 users.

Figure 4. Convergence of total revenue for 30 users.

Figure 5. Convergence of total revenue for 40 users.

Figure 4. Convergence of total revenue for 30 users.

Electronics 2023, 12, x FOR PEER REVIEW 14 of 18

Figure 3. Convergence of total revenue for 20 users.

Figure 4. Convergence of total revenue for 30 users.

Figure 5. Convergence of total revenue for 40 users. Figure 5. Convergence of total revenue for 40 users.

Electronics 2023, 12, 3741 15 of 18Electronics 2023, 12, x FOR PEER REVIEW 15 of 18

Figure 6. The user activity trajectory is the total revenue under ten steps.

Figure 7. The user activity tracking is the total revenue under 20 steps.

The experimental results lead to the following conclusions: (1) For a group of users
with the same mobile trajectory, the total revenue of the OTO-DRL algorithm is signifi-
cantly higher than that of the other four comparison algorithms in the decision-making
process. As shown in Figure 5, the blue and yellow lines represent the total revenue results
of OTO-LD and OTO-EN, respectively. Compared with the initial decision, the results of
OTO-EN are slightly higher than those of OTO-DRL in the initial iteration, which is re-
lated to the size of the user data and the service’s configuration file. The performance of
OTO-EN and OTO-LD is affected by communication overhead and migration delays. In
our experiments, users were set to send data packets continuously at equal time intervals.
Therefore, communication delays will increase when users move frequently, and exten-
sive delays may occur under OTO-EN. (2) The increase in the number of users specifically
impacts convergence. As shown in Figures 5–7, the convergence speed slows down as the
number of users increases. As shown in Figures 5 and 6, after 100 iterations, the total rev-
enue of the users approaches convergence. However, as shown in Figure 7, the total reve-
nue of 40 users approaches convergence after 200 iterations. The reason is that the increase
in the number of users means a corresponding increase in the number of services, and the
probability of conflicts during the terminal task offloading process will increase, which
may slow down the convergence speed. (3) For each group of users, the overall revenue
fluctuates within a relatively fixed range. Due to the relatively dense supply of edge serv-
ers, many overlapping areas provide users with multiple choices. During the learning

Figure 6. The user activity trajectory is the total revenue under ten steps.

Electronics 2023, 12, x FOR PEER REVIEW 15 of 18

Figure 6. The user activity trajectory is the total revenue under ten steps.

Figure 7. The user activity tracking is the total revenue under 20 steps.

The experimental results lead to the following conclusions: (1) For a group of users
with the same mobile trajectory, the total revenue of the OTO-DRL algorithm is signifi-
cantly higher than that of the other four comparison algorithms in the decision-making
process. As shown in Figure 5, the blue and yellow lines represent the total revenue results
of OTO-LD and OTO-EN, respectively. Compared with the initial decision, the results of
OTO-EN are slightly higher than those of OTO-DRL in the initial iteration, which is re-
lated to the size of the user data and the service’s configuration file. The performance of
OTO-EN and OTO-LD is affected by communication overhead and migration delays. In
our experiments, users were set to send data packets continuously at equal time intervals.
Therefore, communication delays will increase when users move frequently, and exten-
sive delays may occur under OTO-EN. (2) The increase in the number of users specifically
impacts convergence. As shown in Figures 5–7, the convergence speed slows down as the
number of users increases. As shown in Figures 5 and 6, after 100 iterations, the total rev-
enue of the users approaches convergence. However, as shown in Figure 7, the total reve-
nue of 40 users approaches convergence after 200 iterations. The reason is that the increase
in the number of users means a corresponding increase in the number of services, and the
probability of conflicts during the terminal task offloading process will increase, which
may slow down the convergence speed. (3) For each group of users, the overall revenue
fluctuates within a relatively fixed range. Due to the relatively dense supply of edge serv-
ers, many overlapping areas provide users with multiple choices. During the learning

Figure 7. The user activity tracking is the total revenue under 20 steps.

The experimental results lead to the following conclusions: (1) For a group of users
with the same mobile trajectory, the total revenue of the OTO-DRL algorithm is significantly
higher than that of the other four comparison algorithms in the decision-making process.
As shown in Figure 5, the blue and yellow lines represent the total revenue results of
OTO-LD and OTO-EN, respectively. Compared with the initial decision, the results of
OTO-EN are slightly higher than those of OTO-DRL in the initial iteration, which is related
to the size of the user data and the service’s configuration file. The performance of OTO-
EN and OTO-LD is affected by communication overhead and migration delays. In our
experiments, users were set to send data packets continuously at equal time intervals.
Therefore, communication delays will increase when users move frequently, and extensive
delays may occur under OTO-EN. (2) The increase in the number of users specifically
impacts convergence. As shown in Figures 5–7, the convergence speed slows down as
the number of users increases. As shown in Figures 5 and 6, after 100 iterations, the total
revenue of the users approaches convergence. However, as shown in Figure 7, the total
revenue of 40 users approaches convergence after 200 iterations. The reason is that the
increase in the number of users means a corresponding increase in the number of services,
and the probability of conflicts during the terminal task offloading process will increase,
which may slow down the convergence speed. (3) For each group of users, the overall
revenue fluctuates within a relatively fixed range. Due to the relatively dense supply
of edge servers, many overlapping areas provide users with multiple choices. During
the learning process of OTO-DRL, due to different offloading locations, the total revenue

Electronics 2023, 12, 3741 16 of 18

generated by these results will fluctuate between several relatively fixed values during
the convergence process, mainly due to the deviation of user activity trajectories and task
offloading locations. The fluctuation of OTO-NC and OTO-SD strategies is significantly
different, and the overall revenue strategy of OTO-SD is better than that of OTO-NC. The
main reason is that once the edge node has insufficient resources in the selection process of
OTO-NC, the terminal user load will increase sharply.

5.3. Performance Evaluation

Based on the above analysis of the convergence of different groups of users, we
evaluated the overall revenue when the user activity trajectories differed between the
two groups in different time series scenarios. The results are shown in Figures 6 and 7
In addition, we obtained the following observations from the analysis: (1) The number of
user activity trajectories generated in different periods will affect the overall revenue. As
shown in Figure 7, when the user trajectory is ten steps, the highest total revenue of different
groups of users under the four strategies is much lower than in the case of 20 trajectories.
(2) The erratic activities of end users make the overall benefits under these four algorithms
completely different. For users with 10 trajectories, the total benefit of the groups of 20 and
30 using the OTO-DRL strategy is higher than that of OTO-SD, but the overall difference is
insignificant. However, for the group of 40 users in the OTO-DRL strategy, the gap between
the overall income and the comparison algorithm is significant. At the same time, with
the increase in the number of users, the revenue of the OTO-NC strategy decreases more
than that of the OTO-SD strategy. For users with 20 trajectories, the total income of these
three groups under OTO-DRL is higher than that of the comparison strategy. However,
it is evident that with the increase in trajectories, the income gap between OTO-NC and
OTO-SD strategies tends to narrow. In conclusion, OTO-NC performs better among users
of different scales in mobile edge computing.

6. Conclusions

In this section, we study the problem of online task offloading in edge collaboration
scenarios. We propose a reward evaluation method based on deep reinforcement learning
to offload online tasks for multiple mobile users and jointly optimize the overall delay
and energy consumption under the constraints of edge physical resources. On this basis,
aiming at the characteristics of user mobility, a task optimization scheduling mechanism
based on the multi-dimensional characteristics of tasks and edge resource conditions is
proposed to avoid invalid states in the decision-making module and approximate strategies
in the decision-making module according to the introduced feasibility mechanism. Finally,
we conduct experiments on synthetic simulation datasets and real datasets, respectively.
We provide corresponding conclusions in the synthetic simulation dataset section by
analyzing and evaluating the proposed joint optimization method with several state-of-the-
art methods. The experimental results show that the scheme can well realize the increase in
the number of tasks requested by mobile terminal users in the edge collaborative service
area while providing a guarantee for the service quality of task requests with higher priority.

Author Contributions: Conceptualization, M.S. and T.B.; methodology, M.S.; software, M.S.; valida-
tion, M.S., T.B. and D.X.; formal analysis, M.S.; investigation, M.S.; resources, H.L.; data curation,
H.L. and G.S.; writing—original draft preparation, M.S.; writing—review and editing, D.X. and H.L.;
visualization, M.S.; supervision, T.B. and G.S.; project administration, T.B.; funding acquisition, T.B.
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Electronics 2023, 12, 3741 17 of 18

References
1. Gubbi, J.; Buyya, R.; Marusic, S.; Palaniswami, M. Internet of Things (IoT): A Vision, Architectural Elements, and Future Directions.

Future Gener. Comput. Syst. 2013, 29, 1645–1660. [CrossRef]
2. Shi, W.; Cao, J.; Zhang, Q.; Li, Y.; Xu, L. Edge computing: Vision and challenges. IEEE Internet Things J. 2016, 3, 637–646. [CrossRef]
3. Cisco, U. Cisco annual internet report (2018–2023) white paper. Cisco San Jose CA USA 2020, 10, 1–35.
4. Stryjak, J. The Mobile Economy 2020; GSMA: London, UK, 2020.
5. Quan, T.; Zhang, H.; Yu, Y.; Tang, Y.; Liu, F.; Hao, H. Seismic Data Query Algorithm Based on Edge Computing. Electronics 2023,

12, 2728. [CrossRef]
6. Mukherjee, M.; Kumar, S.; Mavromoustakis, C.X.; Mastorakis, G.; Matam, R.; Kumar, V.; Zhang, Q. Latency-driven parallel task

data offloading in fog computing networks for industrial applications. IEEE Trans. Ind. Inform. 2019, 16, 6050–6058. [CrossRef]
7. Sarkar, I.; Adhikari, M.; Kumar, N.; Kumar, S. Dynamic task placement for deadline-aware IoT applications in federated fog

networks. IEEE Internet Things J. 2021, 9, 1469–1478. [CrossRef]
8. Yang, B.; Cao, X.; Bassey, J.; Li, X.; Kroecker, T.; Qian, L. Computation Offloading in Multi-Access Edge Computing Networks: A

Multi-Task Learning Approach. In Proceedings of the ICC 2019-2019 IEEE International Conference on Communications (ICC),
Shanghai, China, 21–23 May 2019; pp. 1–6.

9. Tong, Z.; Deng, X.; Ye, F.; Basodi, S.; Xiao, X.; Pan, Y. Adaptive computation offloading and resource allocation strategy in a
mobile edge computing environment. Inf. Sci. 2020, 537, 116–131. [CrossRef]

10. Yuan, Q.; Li, J.; Zhou, H.; Lin, T.; Luo, G.; Shen, X. A joint service migration and mobility optimization approach for vehicular
edge computing. IEEE Trans. Veh. Technol. 2020, 69, 9041–9052. [CrossRef]

11. Zhan, W.; Luo, C.; Min, G.; Wang, C.; Zhu, Q.; Duan, H. Mobility-aware multi-user offloading optimization for mobile edge
computing. IEEE Trans. Veh. Technol. 2020, 69, 3341–3356. [CrossRef]

12. Zhou, J.; Tian, D.; Wang, Y.; Sheng, Z.; Duan, X.; Leung, V.C. Reliability-oriented optimization of computation offloading for
cooperative vehicle-infrastructure systems. IEEE Signal Process. Lett. 2018, 26, 104–108. [CrossRef]

13. Zhang, H.; Guo, J.; Yang, L.; Li, X.; Ji, H. Computation Offloading Considering Fronthaul and Backhaul in Small-Cell Networks
Integrated with MEC. In Proceedings of the 2017 IEEE Conference on Computer Communications Workshops (INFOCOM
WKSHPS), Atlanta, GA, USA, 1–4 May 2017; pp. 115–120.

14. Xu, J.; Li, X.; Ding, R.; Liu, X. Energy Efficient Multi-Resource Computation Offloading Strategy in Mobile Edge Computing.
2019. Available online: https://dro.deakin.edu.au/articles/journal_contribution/Energy_efficient_multi-resource_computation_
offloading_strategy_in_mobile_edge_computing/20742406c (accessed on 1 January 2019).

15. Ouyang, T.; Zhou, Z.; Chen, X. Follow me at the edge: Mobility-aware dynamic service placement for mobile edge computing.
IEEE J. Sel. Areas Commun. 2018, 36, 2333–2345. [CrossRef]

16. Wei, F.; Chen, S.; Zou, W. A greedy algorithm for task offloading in mobile edge computing system. China Commun. 2018, 15,
149–157. [CrossRef]

17. Zhang, H.; Wu, W.; Wang, C.; Li, M.; Yang, R. Deep Reinforcement Learning-Based Offloading Decision Optimization in Mobile
Edge Computing. In Proceedings of the 2019 IEEE Wireless Communications and Networking Conference (WCNC), Marrakesh,
Morocco, 15–18 April 2019; pp. 1–7.

18. Lu, S.; Wu, J.; Duan, Y.; Wang, N.; Fang, J. Towards cost-efficient resource provisioning with multiple mobile users in fog
computing. J. Parallel Distrib. Comput. 2020, 146, 96–106. [CrossRef]

19. Yu, B.; Pu, L.; Xie, Y.; Jian, Z. Joint task offloading and base station association in mobile edge computing. J. Comput. Res. Dev.
2018, 55, 537–550.

20. Chang, J.; Kang, M.; Park, D. Low-power on-chip implementation of enhanced svm algorithm for sensors fusion-based activity
classification in lightweighted edge devices. Electronics 2022, 11, 139. [CrossRef]

21. Liu, L.; Liu, X.; Zeng, S. Research on virtual machines migration strategy based on mobile user mobility in mobile edge computing.
J. Chongqing Univ. Posts Telecommun. Nat. Sci. Ed. 2019, 18, 570–584.

22. Gao, L.; Moh, M. Joint Computation Offloading and Prioritized Scheduling in Mobile Edge Computing. In Proceedings of
the 2018 International Conference on High Performance Computing & Simulation (HPCS), Orleans, France, 16–18 July 2018;
pp. 1000–1007.

23. Kim, T.; Sathyanarayana, S.D.; Chen, S.; Im, Y.; Zhang, X.; Ha, S.; Joe-Wong, C. Modems: Optimizing edge computing migrations
for user mobility. IEEE J. Sel. Areas Commun. 2022, 41, 675–689. [CrossRef]

24. Ale, L.; Zhang, N.; Fang, X.; Chen, X.; Wu, S.; Li, L. Delay-aware and energy-efficient computation offloading in mobile-edge
computing using deep reinforcement learning. IEEE Trans. Cogn. Commun. Netw. 2021, 7, 881–892. [CrossRef]

25. Hazra, A.; Donta, P.K.; Amgoth, T.; Dustdar, S. Cooperative transmission scheduling and computation offloading with collabora-
tion of fog and cloud for industrial IoT applications. IEEE Internet Things J. 2022, 10, 3944–3953. [CrossRef]

26. Wu, T.; Jiang, M.; Han, Y.; Yuan, Z.; Li, X.; Zhang, L. A traffic-aware federated imitation learning framework for motion control at
unsignalized intersections with internet of vehicles. Electronics 2021, 10, 3050. [CrossRef]

27. Ding, Y.; Liu, C.; Zhou, X.; Liu, Z.; Tang, Z. A code-oriented partitioning computation offloading strategy for multiple users and
multiple mobile edge computing servers. IEEE Trans. Ind. Inform. 2019, 16, 4800–4810. [CrossRef]

28. Wei, X.; Wang, Y. Joint Resource Placement and Task Dispatching in Mobile Edge Computing across Timescales. In Proceedings
of the 2021 IEEE/ACM 29th International Symposium on Quality of Service (IWQOS), Tokyo, Japan, 25–28 June 2021; pp. 1–6.

https://doi.org/10.1016/j.future.2013.01.010
https://doi.org/10.1109/JIOT.2016.2579198
https://doi.org/10.3390/electronics12122728
https://doi.org/10.1109/TII.2019.2957129
https://doi.org/10.1109/JIOT.2021.3088227
https://doi.org/10.1016/j.ins.2020.05.057
https://doi.org/10.1109/TVT.2020.2999617
https://doi.org/10.1109/TVT.2020.2966500
https://doi.org/10.1109/LSP.2018.2880081
https://dro.deakin.edu.au/articles/journal_contribution/Energy_efficient_multi-resource_computation_offloading_strategy_in_mobile_edge_computing/20742406c
https://dro.deakin.edu.au/articles/journal_contribution/Energy_efficient_multi-resource_computation_offloading_strategy_in_mobile_edge_computing/20742406c
https://doi.org/10.1109/JSAC.2018.2869954
https://doi.org/10.1109/CC.2018.8543056
https://doi.org/10.1016/j.jpdc.2020.08.002
https://doi.org/10.3390/electronics11010139
https://doi.org/10.1109/JSAC.2022.3229425
https://doi.org/10.1109/TCCN.2021.3066619
https://doi.org/10.1109/JIOT.2022.3150070
https://doi.org/10.3390/electronics10243050
https://doi.org/10.1109/TII.2019.2951206

Electronics 2023, 12, 3741 18 of 18

29. Wu, G.; Li, Z. Task Offloading Strategy and Simulation Platform Construction in Multi-User Edge Computing Scenario. Electronics
2021, 10, 3038. [CrossRef]

30. Guo, F.; Zhang, H.; Ji, H.; Li, X.; Leung, V.C. An efficient computation offloading management scheme in the densely deployed
small cell networks with mobile edge computing. IEEE/ACM Trans. Netw. 2018, 26, 2651–2664. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/electronics10233038
https://doi.org/10.1109/TNET.2018.2873002

	Introduction
	Related Work
	Problem Description
	System Model
	Transfer Model
	Computational Model
	Execute on the Local Device
	Offload Processing Delay

	Edge Collaborative Online Task Offloading Strategy Based on Deep Reinforcement Learning
	Overall Policy Framework
	Load Balancing-Based Multi-Task Offloading Conflict Resolution Mechanism
	Online Task Offloading Strategy Based on Deep Reinforcement Learning

	Evaluation of Experiments
	Basic Settings of the Experimental Environment
	Convergence Evaluation
	Performance Evaluation

	Conclusions
	References

