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Abstract

Marine ships are the transport vehicle in the ocean and instance segmentation of marine

ships is an accurate and efficient analysis approach to achieve a quantitative understanding

of marine ships, for example, their relative locations to other ships or obstacles. This relative

spatial information is crucial for developing unmanned ships to avoid crashing. Visible light

imaging, e.g. using our smartphones, is an efficient way to obtain images of marine ships,

however, so far there is a lack of suitable open-source visible light datasets of marine ships,

which could potentially slow down the development of unmanned ships. To address the

problem of insufficient datasets, here we built two instance segmentation visible light data-

sets of marine ships, MariBoats and MariBoatsSubclass, which could facilitate the current

research on instance segmentation of marine ships. Moreover, we applied several existing

instance segmentation algorithms based on neural networks to analyze our datasets, but

their performances were not satisfactory. To improve the segmentation performance of the

existing models on our datasets, we proposed a global and local attention mechanism for

neural network models to retain both the global location and semantic information of marine

ships, resulting in an average segmentation improvement by 4.3% in terms of mean average

precision. Therefore, the presented new datasets and the new attention mechanism will

greatly advance the marine ship relevant research and applications.

1 Introduction

Image segmentation plays an essential role in many visual understanding and object detection

systems [1–3]. It involves a process that employs the intensity (brightness) or other informa-

tion (e.g., edge) of an image to divide the image into independently connected regions. Image

segmentation algorithms can be classified into at least two categories, i.e., semantic segmenta-

tion and instance segmentation. Semantic segmentation performs pixel-level labelling using a

set of colors (object categories), while instance segmentation extends semantic segmentation

by simultaneously detecting and delineating each object of interest in an image [3, 4].
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Compared to object detection which merely detects the location of an object and places a win-

dow over it, instance segmentation performs more like a combination of object detection and

semantic segmentation that not only detects the locations of all specific objects but also out-

lines and classifies individual detected objects [5]. As to marine ship segmentation, semantic

segmentation classifies all ships in an image into one category, by labelling all ships with one

color, while instance segmentation detects individual ships and classifies them into different

categories. The applications of instance segmentation have been launched successfully in sce-

narios such as unmanned vehicle development [6, 7], human-computer interaction [8, 9],

bio-medicine development [10–12], video surveillance [13–15], and marine ship monitoring

[16–18].

Since marine ships are the vehicle of ocean-related activities such as marine scientific

research and education, transoceanic transport and marine fishing industry, image and video

analysis of marine ships including instance segmentation of marine ships has received an

increasing attention in the past years [18–20]. Instance segmentation of marine ships is capable

of providing important information such as the relative location of a ship with respect to other

ships or surrounding obstacles, which is crucial for ship travel safety. Nowadays, various types

of imaging techniques such as radar and infrared camera, have been equipped on a modern

marine ship or an intelligent unmanned ship [16]. The spatial analysis of the ship imaging data

can provide accurate environmental information to assist the ships to autonomously avoid

crashing with other ships and natural obstacles in the ocean. Moreover, by segmenting a ship

with respect to the background that may contain spatial information (for example, a known

island or city), we can obtain the identity of the ship and the absolute location of the ship on

earth. Therefore, instance segmentation of marine ships from a complex maritime background

is essential for many ocean-related activities.

At present, satellite, synthetic aperture radar (SAR), infrared imaging (IR) and visible light

(VL) imaging, are the main imaging tools to record marine ships, resulting in several different

types of open-source databases for marine ship segmentation. These databases include satellite

remote sensing images [21–23], SAR images [24, 54], IR images [25–27], and VL images [28].

The satellite images usually have a very large field of view, covering a wide space, but their

image resolution is low, providing no accurate information (e.g. the shape and type) of a ship.

SAR imaging can perform regardless of weather conditions, but SAR images usually contain a

large amount of scattering noise and do not have rich spectral information, which is not con-

venient for subsequent ship segmentation purpose.IR imaging has strong penetration capabil-

ity and is not easily affected by environmental conditions, but the contrast and signal-to-noise

ratio of the obtained IR images are usually not high enough, resulting in a lack of color and tex-

ture information of ships. In contrast, VL images have many unique advantages over other

types of images such as high resolution, the inclusion of color and texture information, high

signal-to-noise ratio, high contrast and of rich details, and thus VL images can be a strong

complementary portion to satellite, SAR and IR images [16]. With these merits, VL images can

provide clear information of ship features (e.g., shape) that are crucial for subsequent ship

detection, segmentation and classification. In addition, VL images can be easily obtained in a

very low-cost way by using our routine cell phones and cameras, and therefore, they are suit-

able to build applications that need large scale data. However, so far, there are only a limited

number of open-source databases for VL marine ship images. Although two VL image datasets

of marine ships were presented by Zhang et al. and Sun et al. respectively [16, 18], these data-

sets have not been made publicly available, the scale of these datasets is relatively small and the

labelling of the datasets in terms of ship categories is not fine enough.

The instance segmentation of marine ships in VL images is a challenging image processing

task. In general, the existing segmentation methods can be mainly classified into thresholding
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[29], segmentation based on edge [30], region [31], super-pixel [32, 33], correlation theory [34,

35] and deep learning [36, 37]. The deep learning approach has gained increasing attention

recently, and a challenge of instance segmentation based on deep learning is the acquisition of

the location and semantic mask of each instance. Mask R-CNN implemented a general frame-

work that can efficiently detect objects in an image while simultaneously generating a high-

quality segmentation mask for each instance, which extends the Faster R-CNN model by

adding a branch to predict an object mask in parallel with the existing branch for bounding

box recognition [5]. Since the two-stage instance segmentation approach has high accuracy

but suffers from low speed, the single-stage instance segmentation approach has been pro-

posed to improve the segmentation efficiency. BlendMask was proposed to achieve improved

mask prediction by using an effective combination of instance-level and semantic information

with lower-level fine-granularity [36]. PolarMask was proposed to formulate an instance seg-

mentation problem as the prediction of the instance contours through instance center classifi-

cation and dense distance regression in a polar coordinate system, providing a new way of

designing mask contours [38]. CenterMask is a single-stage anchor-free instance segmentation

method that designed a new spatial attention-guided mask branching [37]. Different from the

abovementioned approaches that rely on accurate edge detection, models such as SOLO and

SOLOv2 can directly segment instance masks and learn instance mask labels, enabling end-to-

end optimization [39, 40]. The SOLO algorithms were demonstrated that they could outper-

form both the two-stage and one-stage algorithms. Instance segmentation of marine ships in

VL images has also attracted increasing attention in the field. Zhang et al proposed an inte-

grated ship segmentation method based on discriminators and extractors to reduce the inter-

ference factors of complex ocean backgrounds [18]. To preserve the global information of a

ship, Sun et al proposed a method using precise RoI pooling and global mask head that could

improve the performance of ship instance segmentation [16]. showing that the use of the

global and complete appearance information of a ship can increase the performance of

instance segmentation. However, this method is too complex due to the extensive modification

in the network architecture, and there is still some room for further improvement by the pres-

ervation of both the global and local ship information, while it is not trivial for the existing

deep learning models to effectively retain both the global and local information.

The human attention mechanism can be a potential solution to retain both global and local

information. In a complex scene, human attention can be attracted easily by salient features

and regions. Inspired by this observation, the attention mechanism was introduced into com-

puter vision. The use of an attention mechanism in instance segmentation can guide the seg-

mentation to the most important regions of an image and ignore irrelevant parts [41]. The

attention mechanism amplifies the role of key feature maps by assigning them greater weights.

It is also important to note that the attention mechanism is a plug-and-play module that can

be efficiently plugged into many deep learning models, which leads to a great success in the

fields such as image classification, object detection, semantic segmentation, instance segmenta-

tion and 3D vision [42–51]. In the existing deep neural networks, e.g. SENet and CBAM [42,

43], the attention mechanism was mainly used to convert the 2D feature maps into pixel fea-

ture maps by dimensionality reduction via 2D global pooling for feature map weight recalibra-

tion. These models using 2D global pooling mainly emphasized on the global information

while ignored the local information. In contrast, the one-dimensional strip pooling is able to

retain merely the local information along the spatial direction accurately [52]. Therefore, the

combination of 2D global pooling and 1D strip pooling is a promising approach to preserve

both the global and local information of an image.

In this work, in order to meet the urgent demand for open-source VL databases of marine

ships, we collect and label two VL marine ship datasets, and test the segmentation performance
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of several existing deep learning models on our VL datasets. Moreover, we further propose a

global and local attention (GALA) mechanism to improve the performance of the existing

instance segmentation models, by combining 2D global pooling and 1D strip pooling to

retrain both the global and local feature information. Both the datasets and the proposed

approach are open-source available together with this study.

2 Methods

2.1 Analysis of the existing ship-related databases

To investigate whether the existing databases of marine ships contain sufficient VL images that

can be used for marine ship instance segmentation, we first explored the open-source datasets,

covering several image types, reported in previous studies (as shown in Table 1). These datasets

included the VL dataset Sea Ships [53], the IR dataset Distant sea ships [54], the SAR dataset

SAR-Ship-Dataset and SSDD [55, 56], the SAR dataset HRSID [57], and the MS COCO dataset

that contains VL images of marine ships [58]. Sea Ships, which contains 31455 VL images and

covers six commonly seen ship types, is mostly used for the object detection task. The Distant

sea ships dataset consists of merely 3132 images of the long-wavelength IR type. The SAR-

Ship-Dataset and SSDD datasets are only composed of high-resolution SAR images. In addi-

tion, these datasets are mainly designed for object detection purpose, by placing a window on

a ship detected, and they do not have annotations required for instance segmentation purpose

which needs to label the location, shape, and category of individual ships. HRSID can be used

for ship instance segmentation because it contains the annotations required for instance seg-

mentation, but it is of SAR type. The MS COCO dataset is a large open-source dataset com-

monly used for instance segmentation. To investigate whether this dataset contains specific VL

images of marine ships that can be used for instance segmentation, we conducted a detailed

analysis of the names of all images contained in the MS COCO dataset, which could indicate

the contents or categories (person, car, boat, and so on) presented in the images. Fig 1 shows

the number of individual categories in the MS COCO dataset, indicating that the distribution

of the quantities of individual categories is uneven. The ‘person’ category takes up to 54% of

the total number of images, while only about 2% of the images belongs to the ‘ship’ category.

We then developed an image extraction script to extract the VL images of marine ships

from the MS COCO dataset, and we named this subset as coco_boats. Since the image size and

object scale in an image are important factors that can affect the performance of an algorithm,

we also analyzed these two factors of images in coco_boats (Fig 2). We found that the length

and width of the images are clustered at 500 and 650 pixels (red, Fig 2), which are evenly dis-

tributed in a line, while the length and width of the ships are located within [50, 650] and [50,

450] respectively (blue, Fig 2). This analysis shows that the image size and ship scale are not

diverse enough. Taken together, IR images and SAR images took up most of the open-source

marine ship datasets, while currently there is a lack of open-source VL datasets of marine ships

Table 1. Overview of several existing open-source datasets of marine ships.

Dataset Type Task Images Size of images

Sea Ships [53] VL Object detection 31455 1920×1080

Distant sea ships [54] IR Object detection 3132 640×512;320×256

SAR-Ship-Dataset [55] SAR Object detection 43819 256×256

SSDD [56] SAR Object detection 1160 190-526×214-668

HRSID [57] SAR Object detection and segmentation 5604 800×800

MS COCO [58] VL Object segmentation 3146 –

https://doi.org/10.1371/journal.pone.0279248.t001
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that can be used for instance segmentation, and we extracted the coco_boats dataset from MS

COCO to facilitate the research of marine ship instance segmentation.

2.2 Two new datasets of VL images for marine ship instance segmentation

A reason of insufficient open-source VL datasets for marine ship instance segmentation may

be the difficulty in data collection and the relatively time-consuming and laborious nature of

labelling segmentation data. To overcome the problem of insufficient datasets, we developed a

script to collect images from the ‘Google Image’ platform, using ‘ship’ as the searching key-

word, after which we manually selected the true marine ship images and labelled the segmenta-

tions of ships using the LabelMe software [59]. Different from placing a window over a ship

used for object detection purpose, which is commonly used in the object detection field, label-

ling ships for instance segmentation purpose is a very time-consuming task. In this labelling

procedure, we first drew a polygon mask of a ship by following and marking the shape of the

ship in an image without interruption, and then we named and classified the labelled ship.

After delineating all the ships in an image with polygonal annotations, we generated an image

annotation file using the json format, which will be later fed into a neural network. In total, we

labelled a number of 6.2k images, which took about 400 hours. Note that the naming and

annotation methods of the new datasets are in consistent with those of MS COCO.

From the Google Image platform, we generated two types of marine ship instance segmen-

tation datasets, named as MariBoats and MariBoatsSubclass respectively, which we hoped can

be used for different research purpose. The MariBoats dataset used all the 6.2k images and all

the labelled ships were assigned to only one category, namely ‘ship’, resulting in 15.7k ship seg-

mentation annotations. Compared with MariShipInsSeg [16], our dataset has a higher number

Fig 1. Distribution of the numbers of individual categories in the MS COCO dataset. The dataset has a total number of 80 categories, where the

green and red arrows represent the number of images in the ‘person’ and ship category respectively.

https://doi.org/10.1371/journal.pone.0279248.g001
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of images and is open-source. This dataset with one category can satisfy the basic instance seg-

mentation requirements (For example, avoiding obstacles (ships) during unmanned driving in

the complex sea scene). To obtain a finer distinction of the labelled ships, we built MariBoats-

Subclass, containing 3.1k images and 4.5k ship annotations. This dataset has six categories of

marine ships: Engineering Ship (Eng.), Cargo Ship (Carg.), Speedboat (Sp.), Passenger Ship

(Pass.), Official Ship (Off.), and Unknown Ship (Unk.). This dataset can be used for both the

ship instance segmentation and the precise identification of marine ship categories in marine

scenes.

2.2.1 MariBoats. The MariBoats dataset is comprised of 6,271 ship images and 15,777

ship segmentation annotations, having only one category. The images in this dataset were par-

tially extracted from 13717 ship images searched on ‘Google Image’ using keywords such as

cargo ships, fishing boats, etc. We excluded those images of low quality, blurred, misrelated to

ships, and the ones with duplicate content. We also included the coco_boats dataset (the subset

of the MS COCO dataset containing VL images of ships) into MariBoats. Fig 3 shows our

delineations of individual ships in representative images of MariBoats, illustrating the labori-

ous nature of the delineation work. Avoiding the work of repeating such delineations is the

motivation to make our datasets publicly available.

Fig 2. The distribution of image and object sizes for the MS COCO ‘ship’ category. A red triangle in the plot indicates the size of an image. A blue

circle indicates the size of a ship.

https://doi.org/10.1371/journal.pone.0279248.g002
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To distinguish the images collected from Google Image with coco_boats, we named the for-

mer as the ‘self_boats’ dataset. The distribution of the image size and ship scale of self_boats is

shown in Fig 4. Compared with coco_boats (Fig 4), the image size distribution (black, Fig 2) of

the self_boats dataset is located within [50, 800] in length and [50, 750] in width, and the size

of ships (green, Fig 4) is distributed within [50, 550] in length and [50, 500] in width. From the

scatter plots of image size and ship scale distribution of MariBoats, which is a combination of

self_boats and coco_boats (Fig 5), we see that the image size and ship scale of the MariBoats

dataset are more diverse than coco_boats.

2.2.2 MariBoatsSubclass. To achieve a finer distinction of ship categories presented in

individual images that can be used for ship instance segmentation, we constructed another

dataset, namely MariBoatsSubclass, containing six categories as mentioned above. The dataset

has 3125 high-quality VL images and 4588 labels. The number of labels are higher than that of

VL images, which is because a single image may contain multiple ships of different types. Fig

6(a) shows the histogram of the number of ships in individual categories, among which the

‘Speedboat’ category has the highest number of images and labels (623 and 892, respectively).

The category of ‘Unknown Ship’ has the lowest number of images, which is 469. In general,

the distribution of each category and the accompanying segmented annotations are relatively

evenly balanced, and the delineation of representatives of each category is shown in Fig 6(b).

2.3. Global and local attention mechanism

After building two datasets for instance segmentation purpose, we next sought to test the per-

formance of the existing instance segmentation models on our datasets. We tested classical

models Mask R-CNN, SOLO and SOLOv2, and we found that the existing segmentation mod-

els to some extent cannot segment ships accurately because some ships were not detected by

them (the red circle in Fig 7) [5, 39, 40]. The reason for the missed detection may due to the

insufficient receptive field of the model, as discussed in [60], and the receptive field size of

most CNN models is not proportional to its layer depth. An insufficient receptive field means

Fig 3. Representative images from MariBoats with manual annotations. The manual delineations are indicated in blue, yellow or red.

https://doi.org/10.1371/journal.pone.0279248.g003
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that the global information of the inputs detected by a CNN model is not rich enough and one

solution to this is to increase the receptive field. Pooling, a key element of CNN, is such a tech-

nique that can be adopted to increase the receptive field size of each convolutional kernel by

downscaling the input graph, allowing the convolutional kernel to perceive a larger range of

information from the input feature map.

Pooling can be further divided into 2D spatial pooling and 1D strip pooling, and the differ-

ence between how they work in instance segmentation is illustrated in Fig 8 [52]. 2D pooling is

more “global” as it downscales and converts the 2D feature maps of a certain length and width

into individual pixels (Fig 8b). With such a downscaling, the convolutional kernel of a neural

network can focus on the global feature information of the inputs. 1D strip pooling applies

dimensionality reduction in only one direction, by projecting the 2D feature map along the

vertical or horizontal direction into one dimension. As shown in Fig 8c, the direction in yellow

indicates that dimensionality reduction is applied along the vertical direction, while the hori-

zontal direction remains unchanged (red). Similarly, dimensionality reduction can be applied

along the horizontal direction (red), while keeping the vertical direction unchanged. In this

way, the information in the feature map can be preserved locally and thus the convolutional

kernel of the neural network can perceive the local information of an object. Intuitively, when

applied to marine ship images, global feature information represents the relative spatial rela-

tionships between different classes of objects [61], and for example, the pixels representing the

Fig 4. The distribution of image and ship sizes in the self_boats dataset.

https://doi.org/10.1371/journal.pone.0279248.g004
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Fig 5. The distribution of image and ship sizes in the MariBoats dataset. It is a combination of Figs 2 and 4.

https://doi.org/10.1371/journal.pone.0279248.g005

Fig 6. The MariBoatsSubclass dataset. (a) The histogram of the number of images and labelled ships in individual categories in MariBoatsSubclass. (b)

Delineations of representative images of each category in MariBoatsSubclass.

https://doi.org/10.1371/journal.pone.0279248.g006
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sky and the sea are mostly above and below the pixels of ships, respectively. This global spatial

intra-class correlation can be used to improve the performance of CNN models for ship

instance segmentation. If we further consider the relative local information such as that both

sky and ship are located above the sea but the ship tends to be closer to the sea, this local infor-

mation allows us to model more complex spatial relationships [62]. If a CNN model only con-

siders local feature information, suppose that the CNN model detects a ship, then adding the

local feature will only motivate the CNN to further detect the ships nearby, while for the ships

located far away, the local feature will not take effect. Therefore, inspired by [61], in order to

Fig 7. An example of a missed detection by the existing algorithms. The red circle represents the ship that should be detected but is not detected.

Inset: the raw image.

https://doi.org/10.1371/journal.pone.0279248.g007

Fig 8. Illustration of the difference between 2D spatial pooling and 1D strip pooling in instance segmentation. (a) The original image. (b) 2-D

spatial pooling. (c)1D strip pooling. (d) The segmentation result using the GALA mechanism.

https://doi.org/10.1371/journal.pone.0279248.g008
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obtain a better segmentation performance than the existing CNN instance segmentation mod-

els aforementioned, we aimed to combine the global and local information.

To achieve this combination, we noticed that the global pooling mechanism is often imple-

mented with the attention mechanism, an area under active investigation currently [43, 63],

and we also noticed that these attention mechanism models mostly do not use the local feature

information. In [48], a model using local pooling was proposed, but it did not use the global

feature information. Here, in order to benefit from both the global and local pooling mecha-

nism [61], we implemented the combination of the global and local mechanism together with

the attention mechanism. By using both the global 2D spatial pooling and the local 1D strip

pooling, we hoped that the new GALA mechanism is capable of improving segmentation per-

formance. An example of the segmentation results by using the proposed GALA mechanism is

shown in Fig 8d.

The GALA mechanism was implemented as follows, schematically shown in Fig 9. First, we

used the global average pooling to reduce the dimensionality of the entire 2D spatial informa-

tion in a feature map, which is averaging all pixel values of each channel map, and we obtained

a new 1 × 1 channel map. The output of the c-th channel feature map can be expressed as [43],

zc ¼
1

H �W

XH

i¼1

XW

j¼1

xcði; jÞ ð1Þ

where xc is the input image of the c-th channel, H is the height of the input image, W is the

width of the input image and zc is the output image of the c-th channel.

After processed by the activation function and convolutional transformation, the feature

map of channel correlation can be obtained and the output image of the c-th channel can be

expressed as,

ẑ c ¼ xc � sðT2ðdðT1ðzcÞÞÞÞ ð2Þ

where σ denotes the sigmoid function, and T1 and T2 are nonlinear transformations describing

the importance of each channel. δ denotes the ReLU activation function. Second, we per-

formed 1D pooling of the feature map with channel correlation in the horizontal and vertical

direction respectively, and the output image of the c-th channel with height h can be expressed

Fig 9. The scheme depicts the GALA mechanism. C represents the number of channels, that is, the number of feature maps.H and W represents the

height and width of the feature maps, respectively.

https://doi.org/10.1371/journal.pone.0279248.g009
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as,

zhc ðhÞ ¼
1

W

X

0�i<W

ẑcðh; iÞ ð3Þ

The output image of channel c with width w can be expressed as,

zwc ðwÞ ¼
1

H

X

0�j<H

ẑcðj;wÞ ð4Þ

where ẑ c denotes the input image of the c-th channel that already has channel correlation.

After processing by the activation function and convolutional transformation, the final feature

maps of channel correlation, direct perception, and position sensitivity can be obtained. The

output image of the c-th channel can be expressed as,

ycði; jÞ ¼ ẑ c � sðFhðzhc ðhÞÞÞ � sðFwðzwc ðwÞÞÞ ð5Þ

where Fh and Fw denote the two 1 × 1 convolutional transforms.

In order to determine which layers of a neural network the GALA mechanism is specifically

applied to, we deployed GALA into a feature pyramid network containing multi-scale feature

information. The shallow feature maps of the feature pyramid network characterize the

detailed information of an object and the deep feature maps characterize the semantic infor-

mation of an object. The combination of feature maps with different depths within the net-

work forms multi-scale representation information. To take full advantage of the multi-scale

representation in the feature pyramid network, here we propose an Enhanced Feature Pyramid

Network (EFPN) based on the GALA mechanism, as shown in Fig 10. For each layer of the

different scale predictions of the feature pyramid network, the GALA mechanism is used to

enhance the representation of the feature graph.

3 Experiment results

Transfer learning is a technique to avoid training a neural network from scratch, and here we

used the pre-trained ImageNet model as the start point for retraining using our datasets [64].

The experimental environment was configured with Ubuntu 16.04.4, pytorch1.4.0, and 4 NVI-

DIA GeForce GTX 1080Ti GPUs. The learning rate is 0.01. The optimization algorithm is the

Stochastic Gradient Descent. We first tested the performance of several classical instance seg-

mentation models, namely Mask R-CNN, SOLO and SOLOv2 models, on our datasets which

included coco_boats, self_boats, MariBoats (coco_boats + self_boats), and MariBoatsSubclass.

The datasets and accompanying algorithms can be download via the link, https://github.com/

s2120200252/Visible-ship-dataset.

3.1 Performance evaluation metrics

We followed the quantitative metric system used by the MS COCO dataset to evaluate the

performance of ship instance segmentation models. The six metrics used are Intersection of

Union (IoU), Average Precision (AP), Mean Average Precision (mAP), Frames Per Second

(FPS), Parameter (Para.) and Time Complexity (TC). We refer to a more detailed definition

about these metrics [58]. IoU is defined as the degree of overlap between two segmentations.

AP is the major metric that will be used for accuracy determination.

AP ¼
Z 1

0

PðRÞdR; ð6Þ
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where P represents precision and R represents recall rate. AP calculates an average IoU, aver-

aging from 0.5 to 0.95 with increment of 0.05. For example, AP50 and AP75 represent the cal-

culation of the average IoU at thresholds of 0.5 and 0.75, respectively. For multi-scale object

detection capability, APS, APM, and APL are used to represent the average accuracy of objects

of small (area < 322 pixels), medium (322 < area< 642 pixels), and large (area > 642 pixels)

size, respectively. Mean Average Precision(mAP) is a mean value of AP over the number of

categories of ships to be detected. In addition to evaluate the accuracy, it is also important to

compare the running time of the tested instance segmentation models. FPS is such a metric

that measures the number of images a model can process in a second. Parameter is the number

of parameters in a neural network model (the parameters learned when training the network).

Params:¼ Co � ðk2 � CiÞ; ð7Þ

where Co represents the number of input channels, k represents the size of a convolution ker-

nel, and Ci represents the number of output channels. Generally speaking, the number of

parameters is positively proportional to the memory required to save the model and the hard-

ware memory requirement. The metric Memory Access Cost (MAC) is generally used to mea-

sure the time complexity (TC) of a model or an algorithm, defined as,

TC ¼ 2� Ci � k2 � Co �W �H; ð8Þ

where Co represents the number of input channels, k represents the size of a convolution ker-

nel, and Ci represents the number of output channels, W represents the width of a feature

map, H represents the height of a feature map.

Fig 10. Schematic diagram of the enhanced feature pyramid structure. EFPN represents our enhanced improvement of the feature pyramid. GALA

represents our proposed global and local attention mechanism. C1-C4 represent the feature maps of different sizes extracted from the backbone

network, respectively, and P1-P4 represent the predicted objects of different scales, respectively. The original structure of the feature pyramid network is

shown in the lower right.

https://doi.org/10.1371/journal.pone.0279248.g010
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3.2 Performance test

3.2.1 Segmentation results on MariBoats having one ship category. We next moved

onto the performance evaluation of the existing models, i.e. Mask R-CNN, SOLO and

SOLOv2, on our datasets. We first performed the evaluation on the coco_boats dataset, and we

found that the segmentations of the images in coco_boats by all the three models were not sat-

isfactory (AP: 9.4,13.4,13.6), which are mostly due to the fact that these models have not been

trained on enough VL ship images. Actually, the poor performance of these models on coco_

boats was our initial motivation for building a larger dataset, containing sufficient VL images

of marine ships, and we hoped that retraining the models by this larger dataset, MariBoats, can

improve the performance of these models. We then used 70% of MariBoats to retrain the three

models aforementioned, and used the remaining 30% for testing. The results of the quantita-

tive tests are shown in Tables 2–4, which directly indicate that the segmentation accuracy of

the three network models has improves for both MariBoats and the two subsets of MariBoats,

coco_boats and self_boats, after retraining the models by MariBoats (the last row in Tables

2–4).

Meanwhile, we further tested the segmentation accuracy of the three models by using only

coco_boats or self_boats to retrain the models and using the other two datasets for testing

(row 1-2 in Tables 2–4). Taking the SOLOv2 as an example (Table 4), the segmentation accu-

racy of coco_boats shows that the model trained on the MariBoats training set improves by

2.4% compared with the results trained on the coco_boats training set. The results of self_boats

show that the model trained on the MariBoats training set improves by 5.7% compared with

the results trained on the self_boats training set. The MariBoats results show that the model

trained on the MariBoats training set improves by 7.9% compared with the results trained

on the self_boats training set. Tables 2 and 3 further verify the advantages of the MariBoats

dataset, containing richer image data, in improving the segmentation performance of Mask

R-CNN and SOLO, respectively. Taken together, these data fully validated the necessity of

building the self_boats dataset and the MariBoats dataset.

Table 2. Test results of Mask-RCNN in three instance segmentation datasets.

Mask R-CNN coco_boats_test/(AP) self_boats_test/(AP) MariBoats_test/(AP)

coco_boats_train 9.5 22.4 18.1

self_boats_train 4 53.3 37.7

MariBoats_train 10.8 55.6 42.4

https://doi.org/10.1371/journal.pone.0279248.t002

Table 4. Test results of SOLOv2 in the three instance segmentation datasets.

SOLOv2 coco_boats_test/(AP) self_boats_test/(AP) MariBoats_test/(AP)

coco_boats_train 13.4 32.5 26.4

self_boats_train 5 59.6 42.5

MariBoats_train 15.8 65.3 50.4

https://doi.org/10.1371/journal.pone.0279248.t004

Table 3. Test results of SOLO in the three instance segmentation datasets.

SOLO coco_boats_test/(AP) self_boats_test/(AP) MariBoats_test/(AP)

coco_boats_train 13.6 35.2 28.3

self_boats_train 5.3 59.2 42.2

MariBoats_train 14.9 61.2 47.2

https://doi.org/10.1371/journal.pone.0279248.t003
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3.2.2 Segmentation results on MariBoatsSubclass having six ship categories. We con-

tinued to test the segmentation performance and computational speed of Mask R-CNN,

SOLO, and SOLOv2 on MariBoatsSubclass upon solving an instance segmentation problem

having six ship categories. The experimental results are shown in Table 5. We first set the

backbone network ResNet to commonly used 50 layers for Mask R-CNN, SOLO, and

SOLOv2 (row 1-3 in Table 5), and SOLOv2 had the highest score in terms of mAP (57.8%),

compared with 42.9% and 55.5% for Mask R-CNN and SOLO, respectively. The segmenta-

tion accuracy of these models on segmenting the Unknown ship category is generally much

lower compared with other categories, and we reasoned that the smaller size of the ships

(having fewer pixels) shown in this category can affect the evaluation of the IoU metric.

However, the mAP of all six-class ships is higher. These further validated the diversity of ship

scales in MariBoatsSubclass. We also noticed that although these model showed improve-

ment after retraining by MariBoatsSubclass, there is still quite some room to improve the

performance of these models. For example, these model are still suffering from incomplete

segmentation, as shown in Fig 11.

Since SOLOv2 had the best performance, and we then selected SOLOv2 to test the compu-

tational speed using a different number of layers (row 4-5). The segmentation accuracies for

SOLOv2 were 56.2% and 57.4% in terms of mAP when the backbone network ResNet was

set to 18 and 34 layers, respectively. Although the mAP values decreased by 1.6% and 0.4%,

respectively, the computational speed of SOLOv2 improved by 35% and 20% in terms of

FPS, reaching 44.7 and 39.9, respectively. This suggests that the segmentation speed can be sig-

nificantly improved with a small loss of AP by reducing the number of residual layers of the

backbone network.

Table 5. Test results of different network structures on MariBoatsSubclass.

Method mAP Eng./(AP) Carg./(AP) Sp./(AP) Pass./(AP) Offic./(AP) Unk./(AP) FPS

Mask R-CNN(Resnet-50) 42.9 43.11 56.12 39.24 54.12 52.16 12.89 16

SOLO(Resnet-50) 55.5 62.44 71.53 53.68 67.99 62.13 15.52 28.3

SOLOv2(Resnet-50) 57.8 68.93 76.14 51.71 69.92 64.54 15.33 33

SOLOv2(Resnet-18) 56.2 68.26 73.90 50.38 68.91 61.32 14.66 44.7

SOLOv2(Resnet-34) 57.4 68.22 75.77 52.45 69.39 62.66 15.83 39.9

https://doi.org/10.1371/journal.pone.0279248.t005

Fig 11. A representative example of incomplete segmentation by Mask R-CNN, SOLO and SOLOv2. The red circles represent the parts of ships that

should be detected but are not detected. Insets: amplified images of the objects with the red circles.

https://doi.org/10.1371/journal.pone.0279248.g011
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3.3 Performance testing of the proposed GALA mechanism

Based on the segmentation results of the MariBoatsSubclass dataset, SOLOv2 achieved the

highest segmentation accuracy and was selected as the base network to implement the atten-

tion mechanism. Note that the attention mechanism has not been used in the existing models

including Mask R-CNN, SOLO, and SOLOv2. Here, we not only introduced the attention

mechanism into SOLOv2, and we further proposed a new attention mechanism, GALA, to

improve the performance of the existing attention mechanisms. To prove the performance of

the proposed GALA mechanism, we introduced different classical attention mechanisms to

SOLOv2 as a comparison (Table 6). As shown in Table 6, compared with SOLOv2 without

using any attention mechanism, the performance of all SOLOv2 models using several classical

attention mechanisms ECA-Net [65], ScSE [63], Triplet Attention [66], SENet [43], and CA

[48], improved in terms of mAP, and the one using GALA mechanism had the largest

improvement, reaching 62.1%, which is 4.3% improvement with respect to SOLOv2 and 3.8%,

3.6% and 3.3% improvements with respect to CA, Triplet Attention and SEnet, respectively.

This validated the performance of the proposed GALA attention mechanism over the existing

attention mechanism, on the VL ship datasets.

We further analyzed the computational complexity of the SOLOv2 model using GALA, in

terms of the increase in the number of parameters and FPS. The increase in the number of

parameters with respect to SOLOv2 was only 0.02 M. This increase is nearly negligible com-

pared with the 30.94 M parameters of SOLOv2. The increase in time complexity was only 0.03

GMAC, and the FPS decreased by only 1.6. This analysis indicates that introducing GALA

into the feature pyramid network can improve the performance of instance segmentation

models significantly with little increase in time complexity and number of parameters.

Visually, GALA also improved the segmentation performance of SOLOv2 on MariBoats.

As shown in Fig 12, SOLOv2, SOLOv2+SEnet, and SOLOv2+CA networks cannot detect

completely all the ships, by either missing a ship partially (the red circles in Fig 12a–12c) or

entirely (Fig 12i and 12k). In addition, SOLOv2, SOLOv2+SEnet, and SOLOv2+CA networks

incorrectly detected the aircraft as a part of the ship below it (Fig 12e–12g). However, SOLOv2

+GALA was able to correctly separate the aircraft from the ship, and could detect all the ships

completely and correctly (Fig 12d, 12l, and 12h). Therefore, this visual comparison together

with the quantitative comparison verified the superiority of the proposed GALA mechanism

over the existing attention mechanisms.

4 Conclusion and discussion

Marine ship instance segmentation of VL images plays an important role in marine-related

scientific research, educational and commercial applications. However, there are hardly any

publicly available and suitable datasets containing VL images of marine ships for ship instance

Table 6. The performance of different attention mechanisms on MariBoatsSubclass.

Methods mAP Eng./(AP) Carg./(AP) Sp./(AP) Pass./(AP) Offic./(AP) Unk./(AP) FPS Para./M TC/(GMAC)

SOLOv2 57.8 68.93 76.14 51.71 69.92 64.54 15.33 33 30.94 58.12

ScSE [63] 58.3 69.64 76.47 52.49 71.37 64.31 15.35 32.2 31.01 58.14

CA [48] 58.3 68.94 76.10 53.00 69.78 64.87 17.28 31.4 30.95 58.15

ECA-Net [65] 58.4 69.35 76.74 53.62 69.95 64.84 16.075 32.7 30.94 58.13

Triplet Attention [66] 58.5 69.86 77.42 52.98 70.24 64.72 15.73 32.2 30.94 58.14

SENet [43] 58.8 69.64 77.54 53.49 70.74 69.07 16.54 32.7 30.95 58.13

+GALA(ours) 62.1 70.24 79.16 60.28 73.44 69.41 20.31 31.4 30.96 58.15

https://doi.org/10.1371/journal.pone.0279248.t006
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segmentation purpose. To address this, we collected and manually labelled two new VL marine

ship datasets using a data collection tool that we developed. The datasets and the accompa-

nying image processing tools are available to the public for visual perception applications of

marine scenes. To the best of our knowledge, there are also rare instance segmentation meth-

ods that are specially designed for marine ship segmentation. Therefore, considering the spe-

cial characteristics of marine ship instance segmentation, we proposed the GALA attention

mechanism, which takes advantage of 1D strip pooling and 2D spatial pooling to preserve

both the global and local information of the input images. Experimental results demonstrated

the superiority of GALA over the existing attention mechanisms on the marine ship datasets.

We selected Mask R-CNN, SOLO, and SOLOv2 as comparison because these models have

been well recognized in the computer vision and remote sensing fields. Many works have tried

Fig 12. Comparison of segmentation results for several typical ship examples, selected from MariBoatsSubclass. The first row (a, e, i):

segmentations of SOLOv2. The second row (b, f, j): the segmentations of SOLOv2+ SEnet. The third row (c, g, j): the segmentations of SOLOv2+ CA.

The last row (d, h, l): the segmentations of SOLOv2 using the proposed GALA mechanism.

https://doi.org/10.1371/journal.pone.0279248.g012
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to improve these models, such as SOLO series models [39, 40], and the Cascade R-CNN mod-

els [67], and these variants are also widely applied in many fields.

Sun et al. has built a VL dataset, MariShipInsSeg, which contains 4K images but MariShi-

pInsSeg is not open-source and this dataset has one general ship category [16]. In contrast, our

dataset MariBoats has more images and is open-source. In addition, we have further refined

the category of MariBoats into six ship categories, leading to our second dataset, MariBoats-

Subclass. It will facilitate the research on accurate segmentation and classification of marine

ships based on appearance, shape and function. Moreover, we have introduced the attention

mechanism into the marine ship instance segmentation of VL images and we have further pro-

posed a novel attention mechanism which can improve the performance of existing neural net-

works. It is important to notice that although the attention mechanism has been applied to the

COCO dataset before, there are no such attention models specially designed for marine ship

instance segmentation of VL images. Marine ship images are different from most of the images

in the COCO dataset in terms of background, texture, and contour of objects. Therefore, it is

the first time that the attention mechanism is introduced into marine ship instance segmenta-

tion using VL images. Most of the existing attention mechanisms such as ECA-Net [65], ScSE

[63], Triplet Attention [66], and SENet [43], have focused on the global information, and only

a few attention mechanisms such as CA [48], have paid attention to the local information.

Inspired by [61], we combined both the global and local mechanism to retain both the global

and local feature information, achieving better segmentation results than the existing attention

mechanisms using only global or local information alone. Our proposed GALA mechanism

maintains the convenience of the attention mechanism that can be applied generally to most

of the neural networks, and the source codes are immediately available to the public. Finally,

we have also made the accompanying data extraction and analysis tools publicly available to

facilitate research in the computer vision field.

In conclusion, we believe that the new open-source datasets we built in this work and the

proposed GALA mechanism will facilitate research in VL ship applications and attract atten-

tion from other computer vision fields to use the GALA mechanism. Future work includes

enriching the current datasets for marine ship instance segmentation and developing fast

segmentation methods for segmenting ships from complex ocean scenes. Moreover, we also

believe that the proposed mechanism is applicable to other fields such as remote sensing and

biomedical microscopic data, because the instant segmentation of targets in these datasets, for

example marine ships in SAR image datasets [57], and cells in the microscopic datasets [68,

69], also relies on the use of global and local information to describe the targets and to distin-

guish the targets from the backgrounds. The application of the GALA attention mechanism to

these datasets will be a valuable plan for future to explore.
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