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Laboratory of On-Orbit Manufacturing and Integration for Space Optics System, Changchun, China

ABSTRACT
This article presents a generalized model of two-axis flexure hinges based
on quadratic rational B�ezier curve. The generalized closed-form compliance
equations are derived based on the virtual work theory and the superpos-
ition relationship of the deformation. Then, how to determine the number
of sensitive axes, the location of the primary and secondary sensitive axes,
and the configuration of the notch profile are discussed. There are 20
types of notch profiles derived from single or mixed, symmetrical or asym-
metrical curves. And, the correctness of the compliance equations is veri-
fied by finite-element analysis. The maximum relative error does not
exceed 10%. Finally, the precision of rotation, the maximum stress, and the
effect of structural parameters on the compliance are analyzed. The results
show that for two-axis flexure hinges with a flush single curve notch pro-
file, the proximity of the center of rotation to the load end does not sig-
nificantly affect the axial compliance as well as the torsional compliance.
For hybrid two-axis flexure hinges with symmetric structure, the ability to
maintain the center of rotation under lateral forces is better than that
under the same torque. The proposed generalized model provides a refer-
ence for the design of spatial compliant mechanisms.
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1. Introduction

Compared to conventional rotating joints, flexure hinges have the advantages of no backlash and
no wear, which are widely used in telescopes (Wang et al. 2023; Li, Chen, and Jin 2018), mono-
lithic compliant rotation platforms (Liang et al. 2020), microgrippers (Das et al. 2020), and
bridge-lever-type displacement amplifiers (Shen, Zhang, and Qiu 2021; Dong et al. 2018).

The flexure hinge performs the function of rotation by elastic deformation, and the compli-
ance characteristics depend mainly on its notch profile (Ma et al. 2020). To meet the require-
ments of complex engineering applications, these compliance equations for different notch
profiles have been designed and developed one after another. For example, circular flexure
hinge (Schotborgh et al. 2005; Yong, Lu, and Handley 2008), elliptical flexure hinge (Chen, Liu,
and Du 2011; Chen, Shao, and Huang 2008; Fu et al. 2015), corner-filleted flexure hinge
(Lobontiu et al. 2001), parabolic flexure hinge (Chen et al. 2009; Lobontiu, Paine, Garcia, et al.
2002; Lobontiu, Paine, O’Malley, et al. 2002), cycloidal flexure hinge (Tian, Shirinzadeh, and
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Zhang 2010; Tian, Shirinzadeh, and Zhang 2010), power-function-shaped flexure hinge (Li,
Pan, and Xu 2013), right-circular corner-filleted flexure hinge (Chen, Jia, and Li 2005a, 2005b),
exponent-sine-shaped flexure hinge (Wang, Zhou, and Zhu 2013), etc. It is worth to be noted
that Zentner and Linß (2019) have already summarized many flexure hinges with different
notch profiles. However, all these compliance equations can still only be applied to design sin-
gle-axis flexure hinges, as shown in Fig. 1(a). And each compliance equation can be used for
only one type of notch profile. Extensive research work has also been carried out to provide
more compliance options for the design and optimization of multiple-axis flexure hinges, as
shown in Fig. 1(b). Li et al. (2022) have proposed a generalized model and configuration design
of multiple-axis flexure hinges under small-deflection occasions. Wang, Wu, and Shao (2021)
have derived compliance equations of generalized elliptical-arc-beam spherical flexure hinges
based on Castigliano’s second theorem. Then, Wei et al. (2021) have derived closed-form com-
pliance equations for elliptic-revolute notch-type multiple-axis flexure hinges based on the
beam theory. Finally, Wei et al. (2022) have analyzed closed-form equations of compliance,
rotational precision, and maximum stress of hybrid multiple-axis flexure hinges.

In addition, some progress has been made in the research related to two-axis flexure hinges, as
shown in Figs. 1(c)–1(e). Lobontiu and Garcia (2003) have proposed a new class of two-axis flex-
ure hinges with axially collocated and symmetric notches based on a parabola. Li et al. (2017)
have proposed a generic compliance modeling method for two-axis elliptical-arc-filleted flexure
hinges. Wu et al. (2018) have studied two-axis elliptical notch flexure hinge (TENFH) which typ-
ically consists of two single-axis elliptical notch flexure hinges. It should be noted that the design
of the two-axis flexure hinge needs to be based on the compliance equations of the single-axis
flexure hinge. In addition, these investigations mainly focus on elliptical notch profiles. And each
compliance equation can be used for only one specific notch profile, which is insufficient for the
design and optimization of single-axis and two-axis flexure hinges. To give more compliance
options for the design and optimization of spatial compliant mechanisms, a compliance equation
applied to both single-axis and two-axis flexure hinges containing more notch profiles needs to
be proposed.

The main contribution of this article is the development of a generalized model of two-axis
flexure hinges based on quadratic rational B�ezier curve. And the generalized closed-form compli-
ance equations in six degrees of freedom based on the virtual work theory and the superposition
relationship of the deformation. It is suitable for transverse notch with single axis, compound-
transverse notch with two axes, transverse notch with single axis connected in series and parallel.
Alternatively, there are 20 types of notch profiles derived from single or mixed, symmetrical, or
asymmetrical curves, which can consist of ellipses, circles, hyperbolas, and parabolas. It solves the
uniqueness of the determined compliance equation with respect to the notch profile and config-
uration. Next, how to determine the number of sensitive axes, set up the primary and secondary
sensitive axes, and classify the notch profile is discussed in Section 3. And, the correctness of the
compliance equation and method is verified by finite element simulation in Section 4. Then, the

Figure 1. Notch types and sensitive axes of flexure hinges: (a) transverse notch with single axis; (b) revolute notch with multiple
axes; (c) compound-transverse notch with two axes; (d) transverse notch with single axis connected in series; (e) transverse notch
with single axis connected in parallel.
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precision of rotation, the maximum stress, and the effect of structural parameters on the compli-
ance are investigated in Section 5. Finally, some conclusions are given in Section 6.

2. Formulation of the compliance equations

2.1. Two-axis flexure hinges

As shown in Fig. 2, the generalized hybrid two-axis flexure hinge includes segments a, b, c, and
d. The lengths of each segment are l1, l2, l2, and l3. It should be noted that the thinnest segments
b and c are the constant rectangular cross-sectional flexure beam. The dimensions of cross-section
A are t0 and w0. The notch profiles of segments a and d are quadratic rational B�ezier curves. The
dimensions of cross-section B are t(x) and w(x). In addition, the bottom end of the hinge is fixed
and the top end is free. In this case, the compliance matrix C of the two-axis flexure hinge can
be expressed as (Li et al. 2017)

C ¼

CDx�Fx 0 0 0 0 0
0 CDy�Fy 0 0 0 CDy�Mz

0 0 CDz�Fz 0 CDz�My 0
0 0 0 Chx�Mx 0 0
0 0 Chy�Fz 0 Chy�My 0
0 Chz�Fy 0 0 0 Chz�Mz

2
66666664

3
77777775

(1)

Next, the compliance matrices of the four segments are defined as Ca, Cb, Cc, and Cd. Then,
O-xyz and Oh-xhyhzh are the global and local coordinate systems established at the fixed and free
ends, respectively. Oa-xayaza (the same for segments b, c, and d) is a local coordinate system
established at the tip of segment a. Based on the superposition relation of deformation and the
theory of virtual work, the compliance matrix C can be expressed as

C ¼ JaCaJ
T
a þ JbCbJ

T
b þ JcCcJ

T
c þ JdCdJ

T
d (2)

where the matrix Ji (the subscript i represents a, b, c, and d.) can be expressed as

Figure 2. 3D model and geometric parameters of hybrid two-axis flexure hinges.
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Ji ¼ Ri �RiSi
03�3 Ri

� �
(3)

where Ri denotes the attitude of the coordinate system Oi-xiyizi with respect to the coordinate sys-
tem Oh-xhyhzh. It is remarkable that the unit matrix Ri ¼ [1,0,0;0,1,0;0,0,1] is the 3� 3 square
matrix. Si can be expressed as

Si ¼
0 �riz riy
riz 0 �rix
�riy rix 0

2
64

3
75 (4)

in which

ra ¼ 2l2 þ l3 0 0
� �

, rb ¼ l2 þ l3 0 0
� �

, rc ¼ l3 0 0
� �

, rd ¼ 0 0 0
� �

(5)

At this point, the compliance matrix C is converted into solving the compliance matrices Ca,
Cb, Cc, and Cd.

Then, the most important thing is to make the established compliance equations have a wide
range of applications. A quadratic rational B�ezier curve is used to design the notch profiles of the
segments a and d. The advantage is the ability to change the notch profile by controlling the rele-
vant parameters. As shown in Fig. 3, the quadratic rational B�ezier curve can be expressed as

x
y

� �
¼ 1� Tð Þ2P0 þ 2WT 1� Tð ÞP1 þ T2P2

1� Tð Þ2 þ 2WT 1� Tð Þ þ T2
(6)

where P0¼ [x0, y0], P1¼ [x1, y1] and P2¼ [x2, y2] are the control points, W� 0 is the weight asso-
ciated with P1. Then, T 2 [0,1], and the shoulder point is Pm¼ [xm, ym]. In addition, the control
points and the shoulder point can be expressed as

P01 ¼ P0 þWP1

1þW
,P12 ¼ P2 þWP1

1þW
,P02 ¼ P2 þ P0

2
,Pm ¼ P2 þ P0 þ 2WP1

2ð1þWÞ (7)

When W¼ 0, the curve is a straight line; When 0<W< 1, the curve is an ellipse. When
W¼ 1, the curve is a parabola. When W> 1, the curve is a hyperbola. It is worth noting that the
minimum thickness t0 or w0 of the hinge is related to ymin. As shown in Figs. 3(a) and 3(b), it is
difficult to calculate ymin by T when y1 < y2 or y1 > y2. As shown in Fig. 3(c), when y1 ¼ y2 and
x1 ¼ (x0þx2)/2, ymin¼ym (and T¼ 0.5) can be derived from Eq. (7). In addition, the relationship
between the shoulder point and the control points reveals that the position of the lowest point is
related to the weights W, control points P0 and P2. Therefore, if segments b and c can be easily
determined, the notch profile must be flush. In other words, as shown in Fig. 3(c), the precondi-
tion for a flush notch profile is that y0 ¼ y2.

Figure 3. The quadratic rational B�ezier curve: (a) y0 < y2; (b) y0 > y2; (c) y0 ¼ y2.
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2.2. Compliance equations of segment a

As shown in Fig. 4, Pa1 ¼ [xa1, ya1, za1], Pa ¼ [xa, ya, za], and Pa3 ¼ [xa3, ya3, za3] are given as
control points of the quadratic rational B�ezier curve. Then, the control points are projected onto
the planes xoy and xoz to obtain two B�ezier curves. Way and Waz are the control weights of the
projected points on the planes xoy and xoz, respectively. Pa1 and Pa2 ¼ [xa2, ya2, za2] are used as
boundary points of the notch profile. The bottom end of segment a is fixed and the top end is
free. For better description, the control weights can be expressed as

Way ¼ Waz ¼ Wa (8)

At this point, the notch profile of segment a can be represented as

xapðTÞ
yapðTÞ
zapðTÞ

2
64

3
75 ¼ 1� Tð Þ2Pa1 þ 2WaT 1� Tð ÞPa þ T2Pa2

1� Tð Þ2 þ 2WaT 1� Tð Þ þ T2
(9)

Then, according to the analysis in Section 2.1, to make the notch profile flush, some con-
straints can be expressed as

ya1 ¼ ya3, za1 ¼ za3, xa ¼ xa2 ¼ xa1 þ xa3
2

(10)

At this moment, Pa2 ¼ [xa2, ya2, za2] can be expressed separately as

ya2 ¼ yap 0:5ð Þ, za2 ¼ zap 0:5ð Þ (11)

At this moment, the dimensions t(x) and w(x) of the cross-section B can be expressed separ-
ately as

t xð Þ ¼ 2yapðTÞ,w xð Þ ¼ 2zapðTÞ (12)

It is worth noting that the minimum thickness t0 and w0 can be expressed as

t0 ¼ 2yapð0:5Þ ¼ 2ya2,w0 ¼ 2zapð0:5Þ ¼ 2za2 (13)

And then, the cross-section area Aa(x) can be expressed as

Aa xð Þ ¼ t xð Þw xð Þ (14)

Figure 4. Key geometric parameters of the notch profile and 3D view of segment a.
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The second moment of the cross-section area can be expressed as

Iy,a ¼ t xð Þw3 xð Þ
12

¼ 4yap Tð Þz3ap Tð Þ
3

, Iz,a ¼ t3 xð Þw xð Þ
12

¼ 4y3ap Tð Þzap Tð Þ
3

(15)

Furthermore, the length of the segment a is l1¼xa2-xa1. According to the small deformation
assumption, the deformation D¼ [Dx, Dy, Dz, hx, hy, hz] is related to the external load F¼ [Fx,
Fy, Fz, Mx, My, Mz] can be expressed as

D ¼ CaF (16)

It is necessary to note that the compliance is established based on the assumption of small
elastic deformation and linearity. Ca is the compliance matrix of segment a, which can be
expressed as (Li et al. 2017)

Ca ¼

C11,a 0 0 0 0 0
0 C22,a 0 0 0 C26,a

0 0 C33,a 0 C35,a 0
0 0 0 C44,a 0 0
0 0 C53,a 0 C55,a 0
0 C62,a 0 0 0 C66,a

2
66666664

3
77777775

(17)

Next, Ca is analyzed based on Castigliano’s second theorem. And C11, a can be expressed as

C11,a ¼
ð l1
0

dx
EAaðxÞ ¼

1
4E

ð0:5
0

x0apðTÞdT
yapðTÞzapðTÞ ¼

1
4E

N1,a (18)

where E is Young’s modulus. And N1,a can be expressed as

N1,a ¼
ð0:5
0

x0ap Tð ÞdT
yap Tð Þzap Tð Þ (19)

Second, C22,a can be expressed as

C22,a ¼
ð l1
0

l1 � xð Þ2
EIz,a

þ j
GAaðxÞ

 !
dx

¼ 3
4E

l21N2,a � 2l1N3,a þ N4,a

� �þ j
4G

N1,a

(20)

where the Poisson ratio is v, the shear coefficient is j¼(12þ 11v)/(10þ 10v) and G is the shear
modulus. In addition, N2,a, N3,a, and N4,a can be expressed as

N2,a ¼
ð0:5
0

x0apðTÞ
y3ap Tð Þzap Tð Þ dT (21)

N3,a ¼
ð0:5
0

xapðTÞx0apðTÞ
y3ap Tð Þzap Tð Þ dT (22)

N4,a ¼
ð0:5
0

x2apðTÞx0apðTÞ
y3ap Tð Þzap Tð Þ dT (23)

6 X. WANG ET AL.



Third, C33,a can be expressed as

C33,a ¼
ðl1
0

l1 � xð Þ2
EIy,a

þ j
GAaðxÞ

 !
dx

¼ 3
4E

l21N5,a � 2l1N6,a þ N7,a

� �þ j
4G

N1,a

(24)

where N5,a, N6,a, and N7,a can be expressed as

N5,a ¼
ð0:5
0

x0apðTÞ
yap Tð Þz3ap Tð Þ dT (25)

N6,a ¼
ð0:5
0

xapðTÞx0apðTÞ
yap Tð Þz3ap Tð Þ dT (26)

N7,a ¼
ð0:5
0

x2apðTÞx0apðTÞ
yap Tð Þz3ap Tð Þ dT (27)

Fourth, C26,a and C62,a can be expressed as

C26,a ¼ C62,a ¼
ðl1
0

l1 � x
EIz,a

dx ¼ 3
4E

l1N2,a � N3,að Þ (28)

Fifth, C35,a and C53,a can be expressed as

C35,a ¼ C53,a ¼ �
ð l1
0

l1 � x
EIy,a

dx ¼ � 3
4E

l1N5,a � N6,að Þ (29)

Then, there are several ways to calculate the torsional compliance of rectangular cross-section
beams. However, most of these depend on the relative size of the cross-sectional thickness and
width (requiring w(x) to be greater than t(x)), which may be changed during the design phase
(especially for the optimization of the design). And, the relative size of the thickness and width
can affect the accuracy of the calculation (Chen and Howell 2009). To start with, an equation can
be expressed as (Lobontiu, Garcia, and Canfield 2004)

IL,a ¼ t xð Þw3 xð Þð1
3
� 0:21

w xð Þ
t xð Þ Þ (30)

Then, an approximate equation can be expressed as (Lobontiu, Garcia, and Canfield 2004)

IYL,a ¼ t xð Þw3 xð Þð1
3
� 0:21

w xð Þ
t xð Þ þ 0:001

w4 xð Þ
t4 xð Þ Þ (31)

To neglect the magnitude of w(x) and t(x), Hearn’s formula for the polar moment of inertia is
used to estimate it (Hearn 1997). The formula can be expressed as

IH,a ¼ t xð Þw3 xð Þ
3:5þ 3:5w2 xð Þ=t2 xð Þ (32)

MECHANICS BASED DESIGN OF STRUCTURES AND MACHINES 7



Then C44,a can be expressed as

C44,a ¼
ð l1
0

dx
GIH,a

¼ 7
32G

ð0:5
0

x0ap Tð Þ y2ap Tð Þ þ z2ap Tð Þ
� 	

dT

y3ap Tð Þz3ap Tð Þ
¼ 7

32G
N8,a

(33)

where N8,a can be expressed as

N8,a ¼
ð0:5
0

x0ap Tð Þ y2ap Tð Þ þ z2ap Tð Þ
� 	

dT

y3ap Tð Þz3ap Tð Þ (34)

Finally, C55,a and C66,a can be expressed as

C55,a ¼
ðl1
0

dx
EIy,a

¼ 3
4E

N5,a,C66,a ¼
ðl1
0

dx
EIz,a

¼ 3
4E

N2,a (35)

2.3. Compliance equations of segments b and c

As shown in Fig. 2, segments b and c are constant rectangular cross-section flexure beams. The
cross-sectional dimensions are t0 and w0. The length is l2. The compliance matrix Cb(c) can be
expressed as

CbðcÞ ¼

C11,bðcÞ 0 0 0 0 0
0 C22,bðcÞ 0 0 0 C26,bðcÞ
0 0 C33,bðcÞ 0 C35,bðcÞ 0
0 0 0 C44,bðcÞ 0 0
0 0 C53,bðcÞ 0 C55,bðcÞ 0
0 C62,bðcÞ 0 0 0 C66,bðcÞ

2
66666664

3
77777775

(36)

The nonzero compliance element of Cb(c) (the subscript b(c) refers to those associated with
segments b and c) can be expressed as

C11,bðcÞ ¼ l2
EAbðcÞ

,C22,bðcÞ ¼ l32
3EIz,bðcÞ

þ jl2
GAbðcÞ

,C33,bðcÞ ¼ l32
3EIy,bðcÞ

þ jl2
GAbðcÞ

C26,bðcÞ ¼ C62,bðcÞ ¼ l22
2EIz,bðcÞ

,C35,bðcÞ ¼ C53,bðcÞ ¼ � l22
2EIy,bðcÞ

C44,bðcÞ ¼ l2
GIH,bðcÞ

,C55,bðcÞ ¼ l2
EIy,bðcÞ

,C66,bðcÞ ¼ l2
EIz,bðcÞ

8>>>>>>>><
>>>>>>>>:

(37)

It should be noted that the torsional moment IH,b(c) of inertia is adopted from Hearn’s formula
in order to ignore the magnitude of w0 and t0. The second moment of the cross-section area are
Iy,b(c) and Iz,b(c). And the cross-section area is Ab(c) ¼ t0w0. At this case, the compliance matrix C
can be determined by simply solving for the compliance matrix of segment d again.

2.4. Compliance equations of segment d

As shown in Fig. 5, Pd1 ¼ [xd1, yd1, zd1], Pd ¼ [xd, yd, zd], and Pd3 ¼ [xd3, yd3, zd3] are used as
control points of the quadratic rational B�ezier curve. According to the analysis in Section 2.2,

8 X. WANG ET AL.



Wdy¼Wdz¼Wd. Pd1 and Pd2 ¼ [xd2, yd2, zd2] are used as boundary points of the notch profile. At
this point, this curve can be expressed as

xdp Tð Þ
ydp Tð Þ
zdp Tð Þ

2
64

3
75 ¼ 1� Tð Þ2Pd1 þ 2WdT 1� Tð ÞPd þ T2Pd2

1� Tð Þ2 þ 2WdT 1� Tð Þ þ T2
(38)

According to the analysis in Section 2.1, some constraints can be expressed as

yd1 ¼ yd3, zd1 ¼ zd3, xd ¼ xd2 ¼ xd1 þ xd3
2

(39)

At this moment, Pd2 ¼ [xd2, yd2, zd2] can be expressed as

yd2 ¼ ydp 0:5ð Þ, zd2 ¼ zdp 0:5ð Þ (40)

Then, the dimensions t(x) and w(x) of the cross-section can be expressed as

t xð Þ ¼ 2ydpðTÞ,w xð Þ ¼ 2zdpðTÞ (41)

In addition, the minimum thickness t0 and w0 can be expressed as

t0 ¼ 2ydpð0:5Þ ¼ 2yd2,w0 ¼ 2zdpð0:5Þ ¼ 2zd2 (42)

Then, the cross-section area Ad(x) can be expressed as

Ad xð Þ ¼ t xð Þw xð Þ (43)

The second moment of the cross-section area can be expressed as

Iyd ¼ t xð Þw3 xð Þ
12

¼
4ydp Tð Þz3dp Tð Þ

3
, Izd ¼ t3 xð Þw xð Þ

12
¼

4y3dp Tð Þzdp Tð Þ
3

(44)

Furthermore, the length of the segment d is l3¼xd-xd1. Then, the compliance matrix Cd of seg-
ment d can be expressed as

Figure 5. Key geometric parameters of the notch profile and 3D view of segment d.
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Cd ¼

C11,d 0 0 0 0 0
0 C22,d 0 0 0 C26,d

0 0 C33,d 0 C35,d 0
0 0 0 C44,d 0 0
0 0 C53,d 0 C55,d 0
0 C62,d 0 0 0 C66,d

2
66666664

3
77777775

(45)

According to the analysis in Section 2.2, the nonzero compliance element of Cd can be
expressed as

C11,d ¼ 1
4E

N1,d (46)

C22,a ¼ 3
4E

l23N2,d � 2l3N3,d þ N4,d

� �þ j
4G

N1,d (47)

C44,d ¼ 7
32G

N8,d (48)

C33,a ¼ 3
4E

l23N5,d � 2l3N6,d þ N7,d

� �þ j
4G

N1,d (49)

C26,d ¼ C62,d ¼ 3
4E

l3N2,d � N3,dð Þ (50)

C35,d ¼ C53,d ¼ � 3
4E

l3N5,d � N6,dð Þ (51)

C55,d ¼ 3
4E

N5,d (52)

C66,d ¼ 3
4E

N2,d (53)

in which

N1,d ¼
ð1
0:5

x0dp Tð Þ
ydp Tð Þzdp Tð Þ dT (54)

N2,d ¼
ð1
0:5

x0dp Tð Þ
y3dp Tð Þzdp Tð Þ dT (55)

N3,d ¼
ð1
0:5

xdp Tð Þx0dp Tð Þ
y3dp Tð Þzdp Tð Þ dT (56)
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N4,d ¼
ð1
0:5

x2dp Tð Þx0dp Tð Þ
y3dp Tð Þzdp Tð Þ dT (57)

N5,d ¼
ð1
0:5

x0dp Tð Þ
ydp Tð Þz3dp Tð Þ dT (58)

N6,d ¼
ð1
0:5

xdp Tð Þx0dp Tð Þ
ydp Tð Þz3dp Tð Þ dT (59)

N7,d ¼
ð1
0:5

x2dp Tð Þx0dp Tð Þ
ydp Tð Þz3dp Tð Þ dT (60)

N8,d ¼
ð1
0:5

x0dp Tð Þ y2dp Tð Þ þ z2dp Tð Þ
� 	
y3dp Tð Þz3dp Tð Þ dT (61)

3. Number of sensitive axes and configuration of notch profiles

In fact, the compliance equation can meet the requirements of more applications, which can pro-
vide more compliance options. It is worth emphasizing that the described compliance equations
are also capable of deriving a two-axis flexure hinge into a single-axis flexure hinge. If the hinge
is a single-axis flexure hinge, the condition of the control weights can be expressed as

Way ¼ Wdy ¼ 0
Waz ¼ Wdz ¼ 0

or



(62)

In such case, as shown in Fig. 6, the flexure hinge has a transverse notch with single axis. As
shown in Figs. 1(d)–1(e), this compliance equations can be used for the design of two-axis flexure
hinges in series or parallel, according to the analysis in Section 2. If the above conditions are sat-
isfied, the flexure hinge is a constant rectangular cross-section flexure beam. And if when the
above conditions are not satisfied, the flexure hinge has a compound-transverse notch with two
axes. In addition, the positions of the primary and secondary sensitive axes are controllable using
the control points and control weights.

Figure 6. Schematic diagram of the parametric control for hybrid two-axis flexure hinges.
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Then, based on the analysis of Section 2.1, the notch profile depends on the control weight W.
Thus, the notch profiles of segment a and segment d can be circular, parabolic, elliptical, and
hyperbolic. And, the notch profiles can be symmetrical and asymmetrical. In addition, l2 deter-
mines whether the notch profile of the hinge is mixed or single. Thus, there are 20 configurations
of notch profiles for two-axis flexure hinges. And, the same is true for single-axis flexure hinges.

To specify the configuration of the notch profile, an analysis based on a binary quadratic
implicit equation is proposed. According to the control points P0¼ [x0, y0], P1¼ [x1, y1], P2¼ [x2,
y2] and the control weights W in Section 2.1, this equation can be expressed as

ax2 þ bxyþ cy2 þ dx þ eyþ f ¼ 0 (63)

in which (Anwar, Tasman, and Hariadi 2021)

a ¼ y0
2 � 4W2y0y1 þ 4W2y1

2 � 2y0y2 þ 4W2y0y2 � 4W2y1y2 þ y2
2 (64)

b ¼ �2x0y0 þ 4W2x1y0 þ 2x2y0 � 4W2x2y0 þ 4W2x0y1 � 8W2x1y1þ
4W2x2y1 þ 2x0y2 � 4W2x0y2 þ 4W2x1y2 � 2x2y2

(65)

c ¼ x0
2 � 4W2x0x1 þ 4W2x1

2 � 2x0x2 þ 4W2x0x2 � 4W2x1x2 þ x2
2 (66)

d ¼ 4W2x1y1y2 � 2x2y0
2 þ 4W2x1y0y1 þ 4W2x2y0y1 � 4W2x0y1

2�
4W2x2y1

2 þ 2x0y0y2 � 8W2x1y0y2 þ 2x2y0y2 þ 4W2x0y1y2 � 2x0y2
2 (67)

e ¼ 4W2x1x2y0 � 4W2x1
2y0 þ 2x0x2y0 � 2x2

2y0 þ 4W2x0x1y1 � 2x0
2y2

�8W2x0x2y1 þ 4W2x1x2y1 þ 4W2x0x1y2 � 4W2x1
2y2 þ 2x0x2y2

(68)

f ¼ x2
2y0

2 � 4W2x1x2y0y1 þ 4W2x0x2y1
2 þ 4W2x1

2y0y2
�2x0x2y0y2 � 4W2x0x1y1y2 þ x0

2y2
2 (69)

According to the analysis in Section 2, the constraints can be expressed as

x1 ¼ x0 þ x2
2

, y0 ¼ y2 (70)

At this time, the parameters a, b, c, d, e, and f can be expressed as

a ¼ 4W2 y0 � y1ð Þ2 (71)

b ¼ 0 (72)

c ¼ 1�W2ð Þ x0 � x2ð Þ2 (73)

d ¼ 16W2x1y0y1 � 8W2x1ðy21 þ y20Þ (74)

e ¼ 8W2y1ðx21 � x0x2Þ � 2y2 x0 � x2ð Þ2 (75)
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f ¼ x0 � x2ð Þ2y22 þ 4W2ðx21y22 þ x0x2y
2
1 � 2x21y1y2Þ (76)

When W¼ 1 (the curve is parabolic), Eq. (63)can be expressed as

ax2 þ dxþ eyþ f ¼ 0 (77)

When W> 1 or 0<W< 1, Eq. (63)can be expressed as

yþ e
2c

� �2
a

þ
xþ d

2a

� 	2
c

¼ 1
ac

d2

4a
þ e2

4c
� f

� �
(78)

where c> 0, the curve is hyperbolic. Otherwise, the curve is elliptical. Specifically, when the curve
is a circle, the constraint can be expressed as

W ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x0 � x2ð Þ2
x0 � x2ð Þ2 þ 4 y0 � y1ð Þ2

s
(79)

To better describe the notch profile, some definitions are made. The hybrid-type is abbreviated
as H and filleted type is abbreviated as F. Then, the following abbreviations are defined: circular-
arc (CA), and elliptical-arc (EA), parabolic-arc (PA), and hyperbolic-arc (HA). At this time, as
shown in Fig. 7, the notch profiles are configured as follows: PAPAHF, PAEAHF, PAHAHF,
PAPAH, PAEAH, PAHAH, EAEAHF, EAHAHF, EAEAH, EAHAH, HAHAHF, HAHAH.
CACAHF, CACAH, CAEAHF, CAEAH, CAPAHF, CAPAH, CAPAHF, and CAPAH. Therefore,
the compliance equations provide more compliance options for the design and optimization of
spatial compliant mechanisms.

4. Finite element analysis and validation

Based on the analysis of Section 3, there are 20 configurations for the notch profile of the hinge.
It is worth mentioning that circular curve is a special case of elliptical curve, so it is ignored.
Therefore, two-axis flexure hinges with 12 notch profiles have been designed to verify the compli-
ance equation. The structural parameters are shown in Table 1. The material of the flexure hinge
is structural steel. Young’s modulus is 200GPa, Poisson’s ratio is 0.3, and the shear modulus is
76.92GPa.

The flexure hinge is meshed using PATRAN, as shown in Fig. 8. The element type of the grid
is Tet 10. And the element quality needs to be greater than 80%. In addition, the solution type is
linear static. One end is fixed and the other end is loaded. To eliminate the additional moment

Figure 7. Twenty types of notch profile of the two-axis flexure hinges.
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of lateral force, Fy and Fz are applied on the left surface of the fixed end, and the load in other
directions is applied on the right surface of the load end. Then, for segments a and d, the centers
Q1 and Q2 of the cross-section are selected to measure the linear displacements in each direction.
The angular displacement is measured by the rotation of the right surface. The results of the the-
oretical and finite element analysis are shown in Table 2. The errors in the finite element results
are within 10% compared to the theoretical results, which can prove the correctness of the com-
pliance equations and the classification method, as shown in Fig. 9.

5. Characteristics of two-axis flexure hinges

5.1. The center of rotation and the compliance

The center of rotation is one of the factors that affect the workspace and performance of preci-
sion instruments. One of the characteristics of the established compliance equation is that the
position of the center of rotation can be controlled. As shown in Fig. 10, the center Q of rotation
of the hinge can be considered as the center at its weakest position. However, the evaluation of
the hinge performance based on the center of rotation of the hybrid flexure hinge is very compli-
cated because of the large number of structural parameters. Most importantly, it is very difficult
to design hinges based on complex constraints. In addition, the flushness of the notch profile is
perhaps the key to the evaluation of the hinge performance. Therefore, the height ratio Hr is
defined to describe the degree of flushness of the hinge. the height ratio Hr can be expressed as

Hr ¼ yd3
ya1

¼ zd3
za1

(80)

When Hr >1 or Hr <1, the notch profile of the hinge is nonflush. When Hr ¼1, the notch
profile is flush. In addition, let l2¼0, and the necessary constraint can be expressed as

Figure 8. Hybrid two-axis flexure hinges: (a) the constraint and load settings; (b) the finite element model.

Table 1. Geometric parameters of hybrid two-axis flexure hinges (xa1¼0, xa¼0.5, xa3¼1, ya1¼�0.7, ya¼0, ya3¼0.7, unit: mm).

No. ya1, ya, ya3 za1, za, za3 Wa l2 yd1, yd, yd3 zd1, zd, zd3 Wb type

1 0.5, 0,0.5 0.4,0,0.4 1 0.25 0.5, 0, 0.5 0.4,0,0.4 1 PAPAHF
2 0.5, 0,0.5 0.4,0,0.4 1 0.25 0.4, �0.05,0.4 0.3,0,0.3 0.5 PAEAHF
3 0.5, 0,0.5 0.4,0,0.4 1 0.25 0.4,0.15,0.4 0.35,0.1,0.35 1.5 PAHAHF
4 0.3, �0.1,0.3 0.4, �0.1,0.4 1 0 0.3, �0.1,0.3 0.4, �0.1,0.4 1 PAPAH
5 0.3, �0.1,0.3 0.4, �0.1,0.4 1 0 0.2, �0.1,0.2 0.2,0.05,0.2 0.5 PAEAH
6 0.3, �0.1,0.3 0.4, �0.1,0.4 1 0 0.4, �0.1,0.4 0.3,0.05,0.3 1.5 PAHAH
7 0.2, �0.1,0.2 0.2, 0.05,0.2 0.5 0.25 0.2, �0.1,0.2 0.2,0.05,0.2 0.5 EAEAHF
8 0.2, �0.1,0.2 0.2, 0.05,0.2 0.5 0.25 0.4, �0.1,0.4 0.3,0.05,0.3 1.5 EAHAHF
9 0.2, �0.1,0.2 0.2, 0.05,0.2 0.5 0 0.2, �0.1,0.2 0.2,0.05,0.2 0.5 EAEAH
10 0.2, �0.1,0.2 0.2, 0.05,0.2 0.5 0 0.4, �0.1,0.4 0.3,0.05,0.3 1.5 EAHAH
11 0.4, �0.1,0.4 0.3,0.05,0.3 1.5 0.25 0.4, �0.1,0.4 0.3,0.05,0.3 1.5 HAHAHF
12 0.4, �0.1,0.4 0.3,0.05,0.3 1.5 0 0.4, �0.1,0.4 0.3,0.05,0.3 1.5 HAHAH
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Waz ¼ Way ¼ Wdz ¼ Wdy ¼ W
ya1 ¼ yd1, ya ¼ yd, ya3 ¼ yd3
za1 ¼ zd1, za ¼ zd, za3 ¼ zd3

8><
>: (81)

In addition, the position of the center of rotation can be determined according to Eq. (7).
Therefore, it is easy to find that the position of the center of rotation is related to the x-coordin-
ate of the control points Pa and Pd. Therefore, it is prescribed to use x ¼ xa ¼ xd to evaluate the
performance of the hinge. The effect of the position of the center of rotation on the performance
is shown in Fig. 11. When the notch profile is not flush, the compliance of the hinge in all direc-
tions decreases as the center of rotation of the hinge approaches the load end. As the height ratio
Hr increases, the compliance in all directions is also reduced. It is important to note that when

Table 2. Compliance results of the flexure hinge obtained by analytical equations and finite element analysis (denoted by A
and F).

No. C11, mm/N C22, mm/N C26(62), rad/N C33, mm/N C35(53), rad/N C44, rad/Nmm C55, rad/Nmm C66, rad/Nmm

1(A) 3.18� 10�5 1.28� 10�3 1.15� 10�3 1.95� 10�3 �1.79� 10�3 2.49� 10�3 2.01� 10�3 1.28� 10�3

1(F) 3.18� 10�5 1.36� 10�3 1.22� 10�3 2.05� 10�3 �1.88� 10�3 2.59� 10�3 2.12� 10�3 1.38� 10�3

2(A) 3.42� 10�5 1.30� 10�3 1.19� 10�3 1.98� 10�3 �1.86� 10�3 2.77� 10�3 2.23� 10�3 1.41� 10�3

2(F) 3.35� 10�5 1.38� 10�3 1.25� 10�3 2.08� 10�3 �1.94� 10�3 2.88� 10�3 2.39� 10�3 1.54� 10�3

3(A) 3.28� 10�5 1.29� 10�3 1.16� 10�3 1.95� 10�3 �1.81� 10�3 2.58� 10�3 2.07� 10�3 1.34� 10�3

3(F) 3.26� 10�5 1.37� 10�3 1.23� 10�3 2.06� 10�3 �1.90� 10�3 2.68� 10�3 2.19� 10�3 1.45� 10�3

4(A) 5.22� 10�5 5.01� 10�3 6.89� 10�3 2.41� 10�3 �3.19� 10�3 1.17� 10�2 4.90� 10�3 1.06� 10�2

4(F) 5.43� 10�5 5.29� 10�3 7.24� 10�3 2.61� 10�3 �3.45� 10�3 1.19� 10�2 5.31� 10�3 1.11� 10�2

5(A) 6.57� 10�5 5.53� 10�3 8.08� 10�3 2.72� 10�3 �3.89� 10�3 1.62� 10�2 7.21� 10�3 1.41� 10�2

5(F) 6.55� 10�5 5.78� 10�3 8.38� 10�3 2.87� 10�3 �4.08� 10�3 1.65� 10�2 7.86� 10�3 1.49� 10�2

6(A) 5.03� 10�5 4.78� 10�3 6.41� 10�3 2.41� 10�3 �3.20� 10�3 1.09� 10�2 4.96� 10�3 9.42� 10�3

6(F) 5.24� 10�5 5.11� 10�3 6.84� 10�3 2.59� 10�3 �3.44� 10�3 1.10� 10�2 5.42� 10�3 1.01� 10�2

7(A) 1.17� 10�4 2.74� 10�2 2.59� 10�2 1.38� 10�2 �1.26� 10�2 3.31� 10�2 1.44� 10�2 2.92� 10�2

7(F) 1.18� 10�4 2.79� 10�2 2.63� 10�2 1.42� 10�2 �1.29� 10�2 3.34� 10�2 1.48� 10�2 2.97� 10�2

8(A) 1.02� 10�4 2.67� 10�2 2.42� 10�2 1.35� 10�2 �1.19� 10�2 2.78� 10�2 1.22� 10�2 2.45� 10�2

8(F) 1.04� 10�4 2.73� 10�2 2.47� 10�2 1.40� 10�2 �1.23� 10�2 2.80� 10�2 1.25� 10�2 2.51� 10�2

9(A) 7.53� 10�5 7.96� 10�3 1.05� 10�2 4.36� 10�3 �5.51� 10�3 1.94� 10�2 8.85� 10�3 1.67� 10�2

9(F) 7.57� 10�5 8.20� 10�3 1.08� 10�2 4.55� 10�3 �5.69� 10�3 1.96� 10�2 9.29� 10�3 1.72� 10�2

10(A) 5.99� 10�5 7.21� 10�3 8.87� 10�3 4.05� 10�3 �4.82� 10�3 1.41� 10�2 6.61� 10�3 1.20� 10�2

10(F) 6.23� 10�5 7.53� 10�3 9.27� 10�3 4.27� 10�3 �5.06� 10�3 1.42� 10�2 6.98� 10�3 1.26� 10�2

11(A) 9.06� 10�5 1.96� 10�2 1.93� 10�3 9.97� 10�3 �9.57� 10�3 2.40� 10�2 1.06� 10�2 2.11� 10�2

11(F) 9.35� 10�5 2.03� 10�2 2.00� 10�3 1.04� 10�2 �9.93� 10�3 2.42� 10�2 1.10� 10�2 2.18� 10�2

12(A) 4.89� 10�5 4.12� 10�3 5.68� 10�3 2.46� 10�3 �3.24� 10�3 1.03� 10�2 5.01� 10�3 8.61� 10�3

12(F) 5.18� 10�5 4.46� 10�3 6.16� 10�3 2.66� 10�3 �3.50� 10�3 1.04� 10�2 5.43� 10�3 9.34� 10�3

Figure 9. The relative error between the finite element analysis and the analytical results.
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the notch profile is flush (i.e., the height ratio is equal to 1), the axial and torsional compliance
of the hinge does not change as the center of rotation approaches the load end. In addition, for
different notch profiles, the parametric sensitivity of the compliance is from low to high as
straight lines, ellipses, parabolas, and hyperbolas. This finding may provide a potential way to
increase the workspace of spatial compliant mechanisms during its design and optimization
phase.

5.2. Precision of rotation

The precision of rotation is also a relatively important indicator. Here the precision of rotation is
analyzed based on a symmetrical structure. On the one hand, the number of control parameters
for asymmetric structures is very large. On the other hand, the asymmetry of the notch profile
makes the general evaluation approach limited. As shown in Fig. 12, the symmetric reference
plane is located between segments b and c. Segments b and c are symmetric about the plane.
Segments a and d are also symmetrical. The center of rotation Q lies at the center of the middle
cross-section. Then, the compliance matrix CQ of segments a and b about the center of rotation
Q can be expressed as

CQ ¼

C11,Q 0 0 0 0 0
0 C22,Q 0 0 0 C26,Q

0 0 C33,Q 0 C35,Q 0
0 0 0 C44,Q 0 0
0 0 C53,Q 0 C55,Q 0
0 C62,Q 0 0 0 C66,Q

2
66666664

3
77777775

(82)

In general, the free end of the hinge needs to have a large compliance. However, a smaller off-
axis compliance at the center of rotation Q is required to achieve a higher precision of motion.
Therefore, the compliance precision ratios are used to evaluate the ability of the free end of the
hinge to maintain the center of rotation at the same displacement. Thus, the four compliance pre-
cision ratios can be expressed as (Li et al. 2017)

R22 ¼
CDy�Fy

C22,Q
,R33 ¼ CDz�Fz

C33,Q
,R26 ¼

Chz�Fy

C26,Q
,R35 ¼

Chy�Fz

C35,Q
(83)

Then, the compliance matrix CQ can be expressed as

CQ ¼ JQCaJ
T
Q þ Cb (84)

in which

Figure 10. Different configurations of the notch profile and the center of rotation.

16 X. WANG ET AL.



Figure 11. Compliance of hybrid two-axis flexure hinges in multiple directions.
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JQ ¼ RQ �RQSQ
03�3 RQ

� �
(85)

The unit matrix RQ ¼ [1,0,0;0,1,0;0,0,1] denotes the attitude of the coordinate system Oa-xayaza
with respect to the coordinate system Ob-xbybzb. SQ can be expressed as

SQ ¼
0 �rQz rQy
rQz 0 �rQx
�rQy rQx 0

2
64

3
75 (86)

where rQ¼ [l2,0,0].
To quantitatively analyze the compliance precision ratio, the investigation here is mainly based

on l2 and W. On the one hand, the analysis based on other parameters is not beneficial to ensure
the structural symmetry of the notch profile. On the other hand, symmetrical structures are very
common in the design process of flexure hinges. The trend of the compliance precision ratios is
shown in Fig. 13. The compliance precision ratios in all four directions first increase and then
decrease as l2 increases. Then, the compliance precision ratios increase with the increase of W.
Moreover, R22 and R33 are more sensitive to W than R26 and R35, respectively. Most importantly,
as W and l2 increase, it is common that R22 and R33 are greater than R26 and R35, respectively. In
addition, for different notch profiles, the precision of rotation is from low to high as straight
lines, ellipses, parabolas, and hyperbolas, respectively. The analysis results show that the ability of
the flexure hinge to maintain the center of rotation under lateral force is better than under the
same torque, which provides a theoretical basis for the design and optimization of the spatial
compliant mechanism.

5.3. Stress equations

To evaluate the fatigue life of flexure hinges, the stress needs to be explicitly given. When the
effects of direct shear and torsion are neglected, the stress of the flexure hinge is mainly depend-
ent on bending and axial effects. Therefore, this stress primarily results from axial forces and
moments. In addition, the stress resulting from the axial force is constant, and the stress resulting
from the moment is linearly varying. Therefore, the maximum stress of the flexure hinge occurs
at the vertex of the cross-section, which is most affected by axial forces and moments, as shown
in Fig. 2. The stress rmax can be expressed as (Lobontiu and Garcia 2003)

Figure 12. Precision model of hybrid two-axis flexure hinges.
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rmax ¼ 1
w xð Þt xð Þ Kt,xFx þ 6

Kt,z

t xð Þ FyLþMzð Þ þ Kt,y

w xð Þ FzLþMyð Þ
� �� �

(87)

where Kt,x, Kt,y and Kt,z are the stress concentration factors (Chen, Wang, and Liu 2014), the
length of the notch profile is L ¼ l1þ2l2þl3.

In addition, to ensure the fatigue life of the hinge, the maximum stress rmax should be less
than the yield strength rs. Further, if the deformation of the flexure hinge needs to be kept linear
and elastic, then the maximum stress rmax should be less than the elastic limit rp.

6. Conclusion

In this article, the generalized closed-form compliance equations based on quadratic rational
B�ezier curve are developed for hybrid two-axis flexure hinges. The equations can be applied to
the design and optimization stages of the hinges which can have a transverse notch with single
axis, compound-transverse notch with two axes, transverse notch with single axis connected in
series or parallel. Alternatively, the notch profile of the hinge can be single and mixed, symmetric
and asymmetric curves, which can consist of ellipses, circles, hyperbolas, and parabolas. The
established compliance equations are more versatile and concise than the existing compliance
equations and provide more compliance options.

Second, it is clearly indicated how to configure the number of sensitive axes and the notch
profile. It is beneficial to determine the type of notch profile and the degree of freedom of the
hinge according to the requirements of the engineering application. Then, the correctness of the
compliance equation and configuration method is further verified by finite element analysis. The
results show that the maximum relative error between the analytical results and the finite element
analysis does not exceed 10%.

Finally, the effects of structural parameters on the compliance and rotational precision of the
hinges are investigated by numerical simulations. The results show that for a two-axis flexure
hinge with a flush single curve notch profile, the proximity of the center of rotation to the load

Figure 13. Trend analysis of compliance precision ratios based on parameters.

MECHANICS BASED DESIGN OF STRUCTURES AND MACHINES 19



end does not significantly affect the axial compliance as well as the torsional compliance. For flex-
ure hinges with nonflush notch profiles, the compliance in all directions decreases as the center
of rotation moves closer to the load end. For the hybrid two-axis flexure hinge with symmetric
structure, the compliance precision ratios increase and then decrease in all four directions as l2
increases. Then the compliance precision ratios increase with the increase of W. Moreover, the
sensitivity of R22 and R33 to W is higher than that of R26 and R35, and the ability of the flexure
hinge to maintain the center of rotation under lateral forces is better than that under the same
torque. In addition, for different notch profiles, the precision of rotation and parametric sensitiv-
ity of compliance are from low to high as straight lines, ellipses, parabolas, and hyperbolas,
respectively. It is worth being mentioned that the maximum stress is also analyzed and discussed.
The relevant theories and conclusions in this article provide theoretical references for the rapid
design and optimization of spatial compliant mechanisms.
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