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of a curvature-adjustable multiple-axis
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Abstract
In order to solve the uniqueness of the compliance equations and each notch profile, a curvature-adjustable multiple-
axis flexure hinge with complex notch profiles is designed and investigated based on Bézier curve in this paper. The
hinge can evolve into multiple-axis flexure hinges with single and hybrid, symmetric and asymmetric notch profiles
composed of the ellipse, circle, hyperbola and parabola. In addition, analytical compliance equations in six degrees of
freedom based on the Castigliano’s Second Theorem are proposed. Then, a simplified notch profile classification
method based on a binary quadratic implicit equation is proposed. Moreover, analytical compliance equations are
validated by finite element analysis. The maximum relative error between the finite element analysis and the analytical
results is 6.07%. Finally, the compliance, precision of rotation and stress are investigated based on structural
parameters. The results show that the change in the rotation centre does not significantly affect the axial and bending
compliance for the flexure hinge with a specific single and flush Bézier curve notch profile. Moreover, the flexure hinge
with a notch profile consisting of ellipse and hyperbola has the highest rotational precision. The proposed curvature-
adjustable multiple-axis flexure hinge can provide more compliance options for the design of compliant mechanisms.
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Introduction

With the rapid development of micro and nano pro-
cessing technology and precision positioning technol-
ogy, flexure hinges are widely used in large aperture
telescopes,1 vibration sensors,2 micro-accelerometers3

and parallel manipulators.4

Flexure hinges perform the function of rotation by
generating elastic deformation, which avoids the fric-
tion and backlash of conventional hinges. It is worth
noting that the compliance of flexure hinges depends
mainly on the notch profile.5 In order to meet the
requirements of large range of motion, high axial stiff-
ness and low stress concentration, flexure hinges with
different notch profiles have been designed and devel-
oped one after another. For example, circular flexure
hinge (CCFH),6,7 elliptical flexure hinge (EPFH),8–11

leaf spring flexure hinge (LSFH),12,13 corner-filleted
flexure hinge (CFFH),14,15 parabolic flexure hinge
(PAFH),16–18 hyperbolic flexure hinge (HYFH),18

cycloidal flexure hinge (CYFH),19,20 filleted V-shaped
flexure hinge (FVFH),19–21 power-function-shaped
flexure hinge (PFFH),22 right-circular corner-filleted

flexure hinge (RCCF),23,24 right-circular elliptical flex-
ure hinge (RCEP),23,24 exponent-sine-shaped flexure
hinge (ESFH),25 nonsymmetric elliptical circular flex-
ure hinge(NSEC),26 etc.

It is remarkable that these works are limited to
flexure hinges with a single sensitive axis transverse
notch profile. Moreover, it is too cumbersome to use
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different compliance equations to design flexure
hinges with different notch profiles. Therefore, gener-
alised closed-form compliance equations for the para-
metric design of hinges would allow a more
comprehensive consideration of the compliance of
various notch profiles. The generalised compliance
equations described here should be able to be applied
to flexure hinges with a wide range of notch profiles.

Some investigations have been carried out inten-
sively to solve this issue. Kong et al.27 have investi-
gated conic-V-shaped flexure hinges. Wu et al. have
parameterised conical notched flexure hinges using
non-uniform rational B-spline (NURBS) curve, which
include elliptic, parabolic, and hyperbolic notch
curves.28 Li et al. have analysed and modelled hybrid
flexure hinges.29 However, these efforts have mainly
focused on flexure hinges with a single sensitive axis
transversely notched. In order to meet the demand for
multi-degree-of-freedom movements in spatial com-
pliant mechanisms, flexure hinges with two-sensitive-
axis transverse notches and multi-sensitive-axis rota-
tional notches have also been developed and investi-
gated.30–32 Li et al. have proposed a generalised two-
axis elliptical-arc-filleted flexure hinge to satisfy the
need for two-degree-of-freedom motion.30 Then, for
the requirement of multi-degree-of-freedom motion
of the spatial compliant mechanism, Li et al. have
proposed the generalised model and configuration
design of multiple-axis flexure hinges.33 However, the
compliance model needs to rely on the existing com-
pliance equations. Then, Wang et al. have presented
the compliance equations for the generalised elliptic-
arc beam spherical flexure hinge.34 Wei et al. have
derived the closed-form compliance equation for
elliptic-revolute notch type multiple-axis flexure
hinges.35 Additionally, Wei et al. have analysed the
compliance and experimental principles of hybrid
multiple-axis flexure hinges.36 Lastly, Ling et al. have
proposed a generalised flexure hinge based on a
discrete-beam transfer matrix.37 However, most of the
above investigations need to rely on different compli-
ance equations. In addition, Ling et al. have already
proposed curvature-adjustable flexure hinge inspired
by red blood cells.38 However, the notch profile types
in this investigation are limited.

In order to avoid wasting a lot of time in finding
different compliance equations to design flexure
hinges, a curvature-adjustable flexure hinge needs to
be proposed. The curvature-adjustable property can
be used to design the hinges with common notch
profiles.

The main contribution is the development of a
curvature-adjustable multiple-axis flexure hinge based
on the Bézier curve in this paper. The curvature-
adjustable property can be applied to the design of
multiple-axis hinges with common notch profiles,
which are mainly composed of circles, ellipses, hyper-
bolas, and parabolas. Then, a simplified classification

method of notch profiles based on a binary quadratic
implicit equation is proposed. In addition, analytical
compliance equations are verified by finite element
analysis. Then, the compliance, precision of rotation,
and stress are investigated based on structural para-
meters. Finally, some conclusions are given.

Compliance equations

A quadratic Bézier curve is a curve from three control
points. The first control point defines the start of the
curve, and the third control point defines its end. The
intermediate control point influences the curvature of
the curve, and it usually is not on the curve. To facili-
tate the establishment of the closed-form compliance
equations for curvature-adjustable multiple-axis flex-
ure hinges, the curve can be expressed as

x tð Þ
y tð Þ

� �
=

B2
0 tð ÞP0 +wB2

1 tð ÞP1 +B2
2 tð ÞP2

B2
0 tð Þ+wB2

1 tð Þ+B2
2 tð Þ , ð1Þ

where P0= [x0, y0], P1= [x1, y1], and P2= [x2, y2] are
the three control points of the curve. w is the weight
of the point P1. When w=0, the curve is a straight
line. When 0 \ w\ 1, the curve is an ellipse. When
w=1, the curve is a parabola. When w . 1, the curve
is a hyperbola. In addition, t2[0,1].

Bn i(t) (i=0,1, ... n) is the Bernstein polynomials
with degree n, which can be expressed as

Bn
i tð Þ= n!

i! n� ið Þ! t
i 1� tð Þn�i, ð2Þ

where n=2.
Then, the curve can be expressed as

x tð Þ= 1� tð Þ2x0 +2wt 1� tð Þx1 + t2x2

1� tð Þ2 +2wt 1� tð Þ+ t2
, ð3Þ

y tð Þ= 1� tð Þ2y0 +2wt 1� tð Þy1 + t2y2

1� tð Þ2 +2wt 1� tð Þ+ t2
: ð4Þ

In order to enrich the notch profile types of
multiple-axis flexure hinges as much as possible, the
closed-form compliance equations can be established
below. As shown in Figure 1, the notch profile of the
flexure hinge consists of three parts, which are a
Bézier curve, a straight line, and a Bézier curve. The
lengths of the three parts are l1, l2 and l3, respectively.
And the total length is L= l1+ l2+ l3. P0= [x0, y0],
P1= [x1, y1], and P2= [x2, y2] are the three control
points of the left Bézier curve m. And P3= [x3, y3],
P4= [x4, y4], and P5= [x5, y5] are the three control
points of the right Bézier curve n. The curve m and
curve n can be expressed as
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xm tð Þ
ym tð Þ

� �
=

1� tð Þ2P0 +2wmt 1� tð ÞP1 + t2P2

1� tð Þ2 +2wmt 1� tð Þ+ t2
,

ð5Þ

xn tð Þ
yn tð Þ

� �
=

1� tð Þ2P3 +2wnt 1� tð ÞP4 + t2P5

1� tð Þ2 +2wnt 1� tð Þ+ t2
,

ð6Þ

where wm is the weight of P1 and wn is the weight of P4.
In addition,Pa and Pb are the boundary points of

the left curve m. Then, Pc and Pd are the boundary
points of the right curve n. These points can be
expressed as

Pa =
xm t1ð Þ
ym t1ð Þ

� �
,Pb =

xm t2ð Þ
ym t2ð Þ

� �
,

Pc =
xn t3ð Þ
yn t3ð Þ

� �
,Pd =

xn t4ð Þ
yn t4ð Þ

� �
: ð7Þ

As shown in Figures 1(b) and 2(a), it should be
noted that the Bézier curve formed by unconstrained
control points is difficult to determine the minimum
diameter dmin. It is because the location of the lowest
point is difficult to be determined. However, taking
the curve m as an example, the control points of the
curve can be expressed as

P01 =
P0 +wP1

1+w
, ð8Þ

P21 =
P2 +wP1

1+w
, ð9Þ

Pm =
P2 +P0

2
, ð10Þ

Pb =
Pm +wP1

1+w
=

P0 +2wP1 +P2

2 1+wð Þ : ð11Þ

Therefore, to facilitate the design of the flexure
hinge, set y0= y2, as shown in Figure 2(b). Similarly
set y3= y5. At this time, the minimum diameter dmin

can be expressed as

dmin=2ym t2ð Þ=2yn t3ð Þ: ð12Þ

Thus, the diameter d(x) of the hinge can be
expressed as

d xð Þ=
2ym tð Þ t 2 t1, t2½ �
dmin x 2 l1, l1 + l2½ �
2yn tð Þ t 2 t3, t4½ �

8><
>: : ð13Þ

Then, the cross-sectional area A(x) can be
expressed as

A xð Þ=

py2m tð Þ t 2 t1, t2½ �
pd2min

4
x 2 l1, l1 + l2½ �

py2n tð Þ t 2 t3, t4½ �

8>>><
>>>:

: ð14Þ

In addition, the moment of inertia about the cross-
sectional area of the neutral axis can be expressed as

Iy xð Þ= Iz xð Þ=

py4m tð Þ
4

t 2 t1, t2½ �

pd4min

64
x 2 l1, l1 + l2½ �

py4n tð Þ
4

t 2 t3, t4½ �

8>>>>>><
>>>>>>:

: ð15Þ

In this moment, the hybrid multiple-axis flexure
hinge can be considered as a variable-section cantile-
ver beam with one side fixed. The coordinate system
is defined at the fixed end, as shown in Figure 1(b).
When the external load vector F = [Fx, Fy, Fz, Mx,
My, Mz]

T acts on the node O2 at the free end of the
flexure hinge, the flexure hinge is deformed. The dis-
placement vector is D = [Dx, Dy, Dz, ux, uy, uz]

T. In

Figure 1. Multiple-axis flexure hinges: (a) 3D model and (b) geometric parameters.
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addition, the total elastic strain energy of the hybrid
multiple-axis flexure hinge includes strain energy
from tension or compression, shear, bending, and
torsion. Therefore, the total strain energy can be
expressed as

U=

ðL
0

F2
x xð Þ

2EA xð Þdx+
ðL
0

kF2
y xð Þ

2GA xð Þdx+
ðL
0

kF2
z xð Þ

2GA xð Þdx+ðL
0

M2
x xð Þ

2GIp xð Þdx+
ðL
0

M2
y xð Þ

2EIy xð Þdx+
ðL
0

M2
z xð Þ

2EIz xð Þdx
,

ð16Þ

where E is the elastic modulus, G is the shear modu-
lus, and the shear coefficient k is 10/9. Ip(x) is the
polar moment of inertia of the cross section.

Then, the external load vector F can be expressed as

Fx xð Þ=Fx,Mx xð Þ=Mx

Fy xð Þ=Fy,My xð Þ=My � Fz L� xð Þ
Fz xð Þ=Fz,Mz xð Þ=Mz +Fy L� xð Þ

8><
>: : ð17Þ

Therefore, the relationship between the load F and
the deformation D can be expressed as

D=CF, ð18Þ

in which

C=

CDx�Fx
0 0 0 0 0

0 CDy�Fy
0 0 0 CDy�Mz

0 0 CDz�Fz
0 CDz�My

0
0 0 0 Cux�Mx

0 0
0 0 Cuy�Fz

0 Cuy�My
0

0 Cuz�Fy
0 0 0 Cuz�Mz

2
6666664

3
7777775
:

ð19Þ

Based on Castigliano’s Second Theorem, the par-
tial derivative of the strain energy U to the external
load F equals the displacement D of the loading point,
which can be descriptively expressed as

D=
∂U

∂F
: ð20Þ

Then, the compliance matrix C is analysed in com-
bination with equations (16)–(20).

Initially, the axial compliance CDx-Fx can be
expressed as

CDx�Fx =

ðL
0

dx

EA xð Þ

=
1

pE

ðt2
t1

x
0
m tð Þ

y2m tð Þ dt+
ðt4
t3

x
0
n tð Þ

y2n tð Þ dt+
ðl1 + l2

l1

1

y2m t2ð Þ
dx

� �

=
1

pE
N1 +N2 +

ðl1 + l2

l1

1

y2m t2ð Þ
dx

� �
,

ð21Þ

where N1 and N2 can be expressed as

N1 =

ðt2
t1

x
0

m tð Þ
y2m tð Þ dt,N2 =

ðt4
t3

x
0

n tð Þ
y2n tð Þ dt: ð22Þ

Then, CDy-Fy and CDz-Fz can be expressed as

CDy�Fy
=CDz�Fz

=CDs
y�Fy

+C
Db
y�Fy

, ð23Þ

in which

CDs
y�Fy

=
k

pG
N1 +N2 +

l2
y2m t2ð Þ

� �
, ð24Þ

Figure 2. Parameterised Bézier curves (w = 2): (a) y0 6¼ y2 and (b) y0 = y2.
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C
Db
y�Fy

=
1

E

ðL
0

L� xð Þ2dx
Iy xð Þ

=
4L2

pE
N3 +N6ð Þ � 8L

pE
N4 +N7ð Þ+

4

pE
N5 +N8ð Þ+

4 L� l1ð Þ3 � L� l2 � l1ð Þ3
� �

3pEym4 t2ð Þ

,

ð25Þ

where Ni (i=3, ., 8) can be expressed as

N3 =

ðt2
t1

x
0
m tð Þ

y4m tð Þ dt,N4 =

ðt2
t1

xm tð Þx0m tð Þ
y4m tð Þ dt

N5 =

ðt2
t1

x2m tð Þx0m tð Þ
y4m tð Þ dt,N6 =

ðt4
t3

x
0
n tð Þ

y4n tð Þ dt

N7 =

ðt4
t3

xn tð Þx0n tð Þ
y4n tð Þ dt,N8 =

ðt4
t3

x2n tð Þx0n tð Þ
y4n tð Þ dt

8>>>>>>>><
>>>>>>>>:

:

ð26Þ

In addition, the rotational compliances can be
expressed as

CDy�Mz
=Cuz�Fy

= � CDz�My
= � Cuy�Fz

=
1

E

ðL
0

L� x

Iy(x)
dx=

4L(N3 +N6)

pE
+

4Ll2
pEym4 t2ð Þ

� 4(N4 +N7)

pE
�
2 l2 + l1ð Þ2 � l21

� �
pEym4 t2ð Þ

:

ð27Þ

Cuz�Mz
=Cuy�My

=

ðL
0

1

EIy(x)
dx=

4(N3 +N6)

pE
+

4l2
pEym4 t2ð Þ

:

ð28Þ

Finally, the torsional compliance Cux-Mx can be
expressed as

Cux�Mx
=

ðL
0

1

GIp(x)
dx=

2(N3 +N6)

Gp
+

2l2
Gpym4 t2ð Þ

,

ð29Þ

where Ip(x)= Iy(x)+ Iz(x) is the polar moment of
inertia of the cross section.

Compared with generalised compliance equations
based on an elliptic curve, the generalised compliance
equation based on the Bézier curve contains more
types of notches.

Notch profiles of the flexure hinge

There is also a great difference in the performance of
flexure hinges with different notch profiles. In order

to classify the notch profiles of multiple-axis flexure
hinges, the analysis is based on a binary quadratic
implicit equation. The binary quadratic implicit equa-
tion can be expressed as

ax2 + bxy+ cy2 + dx+ ey+ f=0, ð30Þ

in which39

a= y0
2 � 4w2y0y1 +4w2y1

2 � 2y0y2 +4w2y0y2

� 4w2y1y2 + y2
2

ð31Þ

b= � 2x0y0 +4w2x1y0 � 4w2x2y0 +4w2x0y1

� 8w2x1y1 +4w2x2y1 +2x0y2 � 4w2x0y2

+4w2x1y2 � 2x2y2 +2x2y0

ð32Þ

c= x0
2 � 4w2x0x1 +4w2x1

2 � 2x0x2 +4w2x0x2

� 4w2x1x2 + x2
2

ð33Þ

d= � 2x2y0
2 +4w2x1y0y1 +4w2x2y0y1 � 4w2x0y1

2

� 4w2x2y1
2 +2x0y0y2 � 8w2x1y0y2 +2x2y0y2

+4w2x0y1y2 +4w2x1y1y2 � 2x0y2
2

ð34Þ

e= � 4w2x1
2y0 +2x0x2y0 +4w2x1x2y0 � 2x2

2y0

+4w2x0x1y1 � 8w2x0x2y1 +4w2x1x2y1 � 2x0
2y2

+4w2x0x1y2 � 4w2x1
2y2 +2x0x2y2

ð35Þ

f= x2
2y0

2 � 4w2x1x2y0y1 +4w2x0x2y1
2 +4w2x1

2y0y2

� 2x0x2y0y2 � 4w2x0x1y1y2 + x0
2y2

2
:

ð36Þ

Take the curve m as an example, as shown in
Figure 2(b). To facilitate the classification of the
notch profiles, the conditions can be expressed as

x1 =
x0 + x2

2
, y0 = y2: ð37Þ

At this point, equations (31)–(36) can be expressed
as

a=4w2 y0 � y1ð Þ2 ð38Þ

b=0 ð39Þ

c= 1� w2
� 	

x0 � x2ð Þ2 ð40Þ
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d=16w2x1y0y1 � 8w2x1(y
2
1 + y20) ð41Þ

e=8w2y1(x
2
1 � x0x2)� 2y2 x0 � x2ð Þ2 ð42Þ

f= x0 � x2ð Þ2y22 +4w2(x21y
2
2 + x0x2y

2
1 � 2x21y1y2):

ð43Þ

When the curve is hyperbolic (c \ 0, w . 1),
equation (30) can be expressed as

y+ e
2c

� 	2
a

�
x+ d

2a

� 	2
�cð Þ =

1

ac
(
d2

4a
+

e2

4c
� f): ð44Þ

When the curve is parabolic (w=1), equation (30)
can be expressed as

ax2 + dx+ ey+ f=0: ð45Þ

When the curve is elliptical (0 \ w \ 1), equation
(30) can be expressed as

x+ d
2a

� 	2
c

+
y+ e

2c

� 	2
a

=
1

ac
(
d2

4a
+

e2

4c
� f): ð46Þ

Specially, when a= c, the curve is a circle. Then,
the weight w of P1 can be expressed as

w=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x0 � x2ð Þ2

x0 � x2ð Þ2 +4 y0 � y1ð Þ2

s
: ð47Þ

Similarly, a similar operation is performed for the
curve n. There are 20 types of derived notch profiles
for flexure hinges based on Bézier curves, as shown in
Figure 3. The most important thing is that there is a
distinction between single and hybrid, and symmetri-
cal and asymmetrical curves of the notches, so there
are more types of hinges. Therefore, the multiple-axis
flexure hinge provides more compliance options for
the design and optimisation of spatial compliant
mechanisms. In addition, the classification method
makes it possible to represent the notch profile in a

Figure 3. Notch profiles derived from multiple-axis flexure hinges (‘-’ simply indicates the type of notch in each section).
Additionally, EP, PA, CC, HY and SL are abbreviations for ellipse, parabola, circle, hyperbola and straight line, respectively.
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polar coordinate system, which provides a theoretical
basis for the design and manufacture of hinges.

Finite element analysis

In order to validate the closed-form compliance equa-
tion used to design the notch profile, 12 typical hinge
examples are investigated by finite element analysis.
Since the circle is a special case of ellipse, it is ignored.
To facilitate the design of the hinge, it is necessary to
state that t1=0, t2= t3=0.5 and t4=1. The specific
parameters are shown in Table 1.

The material of the flexure hinge is structural steel.
elastic modulus is 200GPa, Poisson’s ratio is 0.3, and
shear modulus is 76.92GPa. The flexure hinge is
meshed using PATRAN as shown in Figure 4. The
element type of the grid is Tet 10. And its quality

should be higher than 80%. Additionally, the solu-
tion type is linear static. A fixed support is applied to
the left end of the flexure hinge. Fy is applied to the
left surface of the free end of the flexure hinge to
eliminate parasitic moments. All other loads are
applied to the right surface of the free end. The dis-
placement of the flexure hinge is then evaluated
mainly through points O1 and O2. In addition, the
rotation of the right surface is used to evaluate the
angular deflection of the flexure hinge. The compli-
ance results of the flexure hinges obtained from the
analytical equations and finite element analysis are
shown in Table 2. As shown in Figure 5, the maxi-
mum relative error between the finite element analysis
and the analytical results is 6.07%. The simulation
results prove the correctness of the closed-form com-
pliance equation.

Table 1. Geometric parameters of multiple-axis flexure hinges (unit: mm).

Hinge no. P0, P1, P2 wm P3, P4, P5 wn l2 Type

1 (0,2), (2,0), (4,2) 1 (2,2.5), (5, 20.5), (8,2.5) 1 3 PA-SL-PA
2 (0,2), (2,0), (4,2) 1 (2,2), (5, 21), (8,2) 0.5 3 PA-SL-EP
3 (0,2), (2,0), (4,2) 1 (2,3), (5,0), (8,3) 2 3 PA-SL-HY
4 (0,0.5), (2, 20.1), (4,0.5) 1 (0, 0.3), (2,0.1), (4, 0.3) 1 0 PA-PA
5 (0,0.5), (2, 20.1), (4,0.5) 1 (0,0.3), (2,0), (4,0.3) 0.5 0 PA-EP
6 (0,0.5), (2, 20.1), (4,0.5) 1 (0,0.6), (2,0), (4,0.6) 2 0 PA-HY
7 (0,1.5), (2,0), (4,1.5) 0.5 (2,2), (5, 21), (8,2) 0.5 3 EP-SL-EP
8 (0,1.5), (2,0), (4,1.5) 0.5 (2,3), (5,0), (8,3) 2 3 EP-SL-HY
9 (0,0.3), (2,0), (4,0.3) 0.5 (0,0.4), (2, 20.2), (4,0.4) 0.5 0 EP-EP
10 (0,0.3), (2,0), (4,0.3) 0.5 (0,0.8), (2,0), (4,0.8) 3 0 EP-HY
11 (0,1.5), (2,0), (4,1.5) 2 (2,3), (5,0), (8,3) 5 3 HY-SL-HY
12 (0,1.5), (2,0), (4,1.5) 4 (22,1.5), (2,0), (6,1.5) 4 0 HY-HY

Table 2. Compliance results of the flexure hinge obtained by analytical equations and finite element analysis.

Hinge no. CDx-Fx (mm/N) CDy-Fy (mm/N) Cux-Mx (rad/Nãmm) Cuz-Fy (rad/N) Cuz-Mz (rad/Nãmm)

1(Analytical) 9.50 3 1026 7.34 3 1024 4.25 3 1025 1.43 3 1024 3.27 3 1025

1(FEA) 9.83 3 1026 7.73 3 1024 4.42 3 1025 1.50 3 1024 3.44 3 1025

2(Analytical) 1.01 3 1025 7.41 3 1024 4.55 3 1025 1.46 3 1024 3.50 3 1025

2(FEA) 1.03 3 1025 7.79 3 1024 4.69 3 1025 1.52 3 1024 3.68 3 1025

3(Analytical) 9.02 3 1026 7.26 3 1024 4.01 3 1025 1.39 3 1024 3.09 3 1025

3(FEA) 9.43 3 1026 7.68 3 1024 4.18 3 1025 1.47 3 1024 3.26 3 1025

4(Analytical) 1.06 3 1024 2.99 3 1022 1.05 3 1022 1.41 3 1022 8.10 3 1023

4(FEA) 1.07 3 1024 3.02 3 1022 1.06 3 1022 1.42 3 1022 8.14 3 1023

5(Analytical) 1.08 3 1024 3.02 3 1022 1.09 3 1022 1.44 3 1022 8.39 3 1023

5(FEA) 1.09 3 1024 3.05 3 1022 1.10 3 1022 1.45 3 1022 8.44 3 1023

6(Analytical) 8.13 3 1025 2.70 3 1022 7.18 3 1023 1.17 3 1022 5.52 3 1023

6(FEA) 8.20 3 1025 2.73 3 1022 7.25 3 1023 1.18 3 1022 5.59 3 1023

7(Analytical) 1.05 3 1025 8.64 3 1024 4.86 3 1025 1.63 3 1024 3.73 3 1025

7(FEA) 1.08 3 1025 9.01 3 1024 4.99 3 1025 1.69 3 1024 3.87 3 1025

8(Analytical) 9.50 3 1026 8.49 3 1024 4.32 3 1025 1.56 3 1024 3.32 3 1025

8(FEA) 9.88 3 1026 8.89 3 1024 4.48 3 1025 1.63 3 1024 3.48 3 1025

9(Analytical) 1.17 3 1024 5.06 3 1022 1.22 3 1022 2.01 3 1022 9.35 3 1023

9(FEA) 1.18 3 1024 5.11 3 1022 1.22 3 1022 2.03 3 1022 9.42 3 1023

10(Analytical) 9.16 3 1025 4.71 3 1022 9.06 3 1023 1.74 3 1022 6.97 3 1023

10(FEA) 9.37 3 1025 4.77 3 1022 9.16 3 1023 1.77 3 1022 7.06 3 1023

11(Analytical) 2.97 3 1025 9.34 3 1023 5.32 3 1024 1.88 3 1023 4.09 3 1024

11(FEA) 3.13 3 1025 9.63 3 1023 5.45 3 1024 1.94 3 1023 4.23 3 1024

12(Analytical) 3.09 3 1025 1.16 3 1022 1.04 3 1023 3.01 3 1023 8.03 3 1024

12(FEA) 3.28 3 1025 1.22 3 1022 1.08 3 1023 3.17 3 1023 8.44 3 1024
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Characteristics of flexure hinges

Analysis of compliance characteristics

There are many parameters that affect the perfor-
mance of the flexure hinge, mainly including control
points (P0, P1,P2,P3,P4 andP5), the weights w (wm,
wn), l2, t (t1, t2, t3, t4), etc. However, the large number
of parameters does not facilitate the analysis of the
effect of each parameter on the performance of the
hinge. Therefore, it is a good choice to set the flexure
hinge as a symmetrical flexure hinge. In other words,
the left curve m is the same as the right curve n. Some
necessary conditions can be expressed as

w=wm =wn, y0 = y2 = y3 = y5

x1 = x0 + x2ð Þ=2, x3 = x0 + l2

x4 = x1 + l2, x5 = x2 + l2

8><
>: : ð48Þ

Then, the effects of control points (P1,P4), the
weight w (wm, wn), and l2 on the performance of the
hinge are mainly investigated. At this point, the effect
of w and l2 on the performance is shown in Figure 6.
As w and l2 increase, the compliance of the hinge in
each direction increases. Then, the control points

(P1,P4) not only affect the compliance, but also deter-
mine the rotation centre of the hinge. In other words,
the control points can adjust the workspace of the
hinge. In addition, the rotation centre is also related
to l2. In order to eliminate the effect of l2 and P4, a
flexure hinge with a single curve notch profile is inves-
tigated below. The constraint conditions can be
expressed as

l2 = l3 =0, t1 =0, t2 =1, t3 = t4 =0: ð49Þ

Then, compliance equations can be expressed as

CDx�Fx
=

N1

pE
ð50Þ

CDy�Fy
=CDz�Fz

=
kN1

pG
+

4L2

pE
N3 �

8L

pE
N4 +

4

pE
N5

ð51Þ

CDy�Mz
=Cuz�Fy

= � CDz�My
= � Cuy�Fz

=
4LN3

pE
� 4N4

pE

ð52Þ

Cuz�Mz
=Cuy�My

=
4N3

pE
ð53Þ

Cux�Mx
=

2N3

pG
: ð54Þ

In this case, the compliance and the rotation centre
O of the hinge are only related to P1 and are not influ-
enced by P4, as shown in Figure 7. It is important to
note that the effect of P1 on the compliance is only
concentrated on N1, N3, N4 and N5. Therefore, the
related analysis can be equated to the analysis of the
compliance in each direction. In addition, the rotation
centre O of the hinge is only related to x1. Therefore,
it is necessary to focus on the effect of x1 on the com-
pliance and the rotation centre. To investigate quanti-
tatively the effect of x1 on the compliance, x0=0 and
x2=4 (unit: mm) are set. As shown in Figure 8, when

Figure 5. The relative error between the finite element
analysis and the analytical results.

Figure 4. Multiple-axis flexure hinges: (a) the constraint and load settings and (b) the finite element model.
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y0=y2= 2, N1 and N3 are almost constant with the
change of x1. When y0= 1.5 and y2= 2, N1 and N3

change significantly with the change of x1. In both
cases, N4 and N5 change significantly with the change

Figure 6. Effect of geometric parameters on the compliance of hybrid multiple-axis flexure hinges (y0 = y2 = y3 = y5 = 1, x0 = 0, x1 = 2,
x2 = 4): (a) axial rotation, (b) axial tension or compression, (c) lateral bending under force, (d) lateral bending under torque and (e)
lateral rotation under torque.

Figure 7. The rotation centre of the flexure hinge with a single curve notch.

Wang et al. 9



of x1. In other words, when y0=y2 (the notch profile
is flush), the compliance equations containing only N1

and N3 is little affected by x1. In addition, the compo-
sition of the parameters in the compliance equation is
very simple. Therefore, the analysis related to the
effect of these parameters (N1, N3, N4 and N5) on the
characteristic of the hinge is neglected.

The results show that when y0=y2, CDx-Fx, Cuz-Mz,
Cuy-My and Cux-Mx do not change significantly with
the change of x1. This means that a change in the
rotation centre does not significantly change the com-
pliance in some specific directions. Therefore, the per-
formance of the compliant mechanism can be quickly
improved by changing the rotation centre while satis-
fying the compliance in certain directions. It is useful
to design the compliant mechanism.

Precision of rotation

Currently, the parasitic motions of the geometry cen-
tre and the instant rotation centre are often used to
evaluate the rotational precision of flexure hinges.
Since part of the notch profile is asymmetric, the
instant rotation centre of the hybrid multiple-axis
hinge is evaluated, as shown in Figure 9(a) to (d). In

addition, one end of the hinge is fixed and the free
end is subject to external forces. The geometry centre
of the notch is located at x= l1+ l2/2. It is worth
mentioning that the instant rotation centre depends
on the notch profile and the external load. In order to
compare the performance of hinges with different
notch profiles, the unit moment condition (e.g.
Mz= 1 N�m, as shown in Figure 9(a)) is modelled. It
is assumed that all parts except the notch profile are
sufficiently rigid and the axial deformation is
neglected. At this case, the straight line through the
free end (point Q2) and perpendicular to the rigid
block can be expressed as36

y�MzCDy�Mz
= x� Lð Þ tan MzCuz�Mz

ð Þ: ð55Þ

Then, the intersection of the straight line and the
horizontal axis O1-x is the instant rotation centre of
the hinge, whose x-coordinate position can be
expressed as

lrc=L�
MzCDy�Mz

tan MzCuz�Mz
ð Þ : ð56Þ

Figure 8. Influence of x1 on the compliance parameters: (a) influence of x1 on N1, (b) influence of x1 on N3, (c) influence of x1 on
N4, and (d) influence of x1 on N5.
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In order to compare the precision characteristics
between hybrid flexure hinges, the dimensionless ratio
representing the instant relative position of the rota-
tion centre can be expressed as

RL�rc=
lrc
L
: ð57Þ

In order to quantitatively evaluate the performance
of flexure hinges with different notch profiles, some
constraints need to be imposed. In other words, L
and dmin are constant. Also, set l1=l3. In this case,
the notch profile is changed by using the weight w, as
shown in Figure 10(a). Besides, based on the previous
analysis, whether the notch profile is flush or not is
considered, as shown in Figure 9(c) and (d).

As shown in Figure 10(b) to (d), the ideal rotation
centre (the dimensionless ratio RL-rc=0.5) is used as
a reference. It should be noted that the closer the
dimensionless ratio RL-rc is to the reference, then the
higher the rotational precision of the hinge. As shown
in Figure 10(c) and (d), how the fixed and free ends of
the hinge are set can make the rotational precision
affected. In addition, the dimensionless ratio RL-rc

decreases with increasing wn and decreases with
increasing wm. Further, the optimal choice of curves m
and n should be ellipse and hyperbola, regardless of
whether the components of the notch profile contain

the straight line (l2= 0 is satisfied or not). In addition,
the dimensionless ratio RL-rc increases with increasing
l2. Therefore, the notch profile that does not contain
the straight line (l2= 0) is better than that contains
the straight line (l26¼0), regardless of whether the
notch profile is flush or not. Therefore, when l26¼0,
the flexure hinge has the highest rotational precision
with a notch profile consisting of ellipse, a straight line
and hyperbola. As shown in Figures 3 and 10, the
flexure hinge has the highest rotational precision with
a notch profile consisting of ellipse and hyperbola.5

Stress equations

In order to evaluate the fatigue life of the flexure
hinge, the stress should be explicitly given. As shown
in Figure 1, one end of the hinge is fixed and the load
is applied to the other end. The stress calculation is
also different for flexure hinges with different notch
profiles, which is mainly due to stress concentrations.
It should be noted that the stress concentration factor
of single-axis flexure hinges has been investigated.40

Here, the maximum stress smax resulting from ten-
sion/compression and bending can be expressed as

smax=
32kb My +Mz+ Fy +Fz

� 	
L

� �
pd3min

+
4kaFx

pd2min

:

ð58Þ

Figure 9. Precision of rotation: (a) rotation center,(b) flush revolute notch (c) non-flush revolute notch and (d) non-flush revolute
notch.
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Furthermore, the maximum stress tmax resulting
from torsion can be expressed as

tmax=
16ktMx

pd3min

: ð59Þ

It is important to be noted that kb (in bending), ka
(in tension/compression), and kt (in torsion) are stress
concentration factors.41

Conclusion

In this paper, a curvature-adjustable multiple-axis
flexure hinge is proposed based on Bézier curve. The
curvature-adjustable property can be applied to the
design of multiple-axis hinges with common notch
profiles, which are mainly composed of circles,
ellipses, hyperbolas, and parabolas. Thus, the hinge
has a wider range of applications than the existing.

In addition, a simplified classification method of
notch profile is proposed based on the binary quadra-
tic implicit equation, which is convenient to determine
the type and structural parameters of notch profiles.
The method provides a very simple and effective ref-
erence for the design and CNC machining process of
hinges. Then, the structural parameters of 12 typical
flexure hinges are designed based on the previous
analysis. And the correctness of all compliance equa-
tions is further verified using finite element analysis.
The results show that the maximum relative error
between the analytical results and the finite element
analysis is 6.07%.

Finally, the compliance, the precision of rotation,
and stress are investigated based structure para-
meters. The results show that the change in the rota-
tion centre does not significantly affect the axial and
bending compliance (CDx-Fx, Cuz-Mz, Cuy-My, Cux-Mx)
for multiple-axis flexure hinges with a specific single
and flush Bézier curve notch profile. Then, the flexure

Figure 10. The instant relative position of the rotation centre: (a) curvature-adjustable notch profiles, (b) y0 = y2 = y3 = y5, (c)
y0 = y2 \ y3 = y5 and (d) y0 = y2 . y3 = y5.
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hinge has the highest rotational precision with a
notch profile consisting of ellipse and hyperbola. The
results provide a potential method for designing spa-
tial compliant micro–nano mechanisms.
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