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Infrared Moving Small Target Detection Based on
Consistency of Sparse Trajectory
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Abstract— Infrared search and track (IRST) systems require
reliable detection of small targets in complex backgrounds.
Outlier-based methods are prone to high false positive rates
due to the resemblance of point-like background features to
small targets. The difference image-based method is an effective
approach for suppressing point-like background interference;
however, it has limitations in detecting slow-moving targets.
In this letter, a novel sparse trajectory is proposed for moving
target detection in IR videos. With a trajectory growing strategy,
two kinds of trajectories from difference images, namely, short
sparse trajectories and long sparse trajectories, are correlated
to avoid the slow-moving targets being dismissed. The strategy
matches the trajectories based on the sparse trajectory intensity
composed of similarity measures and optical flow consistency.
Finally, real targets are extracted from candidate trajectories
using trajectory filtering. Experimental results show that, in the
scene with point-like background features, our method achieves
the best detection rate and lowest false alarm compared to the
state-of-the-art methods.

Index Terms— Infrared moving small target, optical flow con-
sistency, similarity measure, sparse trajectory, trajectory growth.

I. INTRODUCTION

INFRARED moving target detection technology has played
an important role in early warning, precise guidance, and

other fields. However, detecting infrared small targets is still a
challenging task due to their low signal-to-clutter ratio (SCR)
and the presence of target-like disturbances in the background,
such as building spots and detector noise.

Existing small target detection methods can be classified
into two categories: single-frame and sequential detection
methods. Single-frame detection methods rely on the human
visual system (HVS) theory and typically use different feature
descriptors to describe the dissimilarity between the target
and surrounding background [1]. Although these methods are
straightforward to implement, they are limited by the contrast
between target and background and do not perform well at
low SCR. To address this issue, some methods attempted to
fuse local and global features [2]. Based on the spectral graph
theory, Xia et al. [3] proposed modified random walks, which
leverage spectral graph theory to describe the sparsity of the
target. Huang et al. [4] introduced density peaks searching

Manuscript received 15 December 2022; revised 1 March 2023; accepted
11 March 2023. Date of publication 16 March 2023; date of current version
24 March 2023. This work was supported in part by the National Natural
Science Foundation of China under Grant 62171430 and Grant 62101071,
and in part by the Natural Science Foundation of Jilin Province under Grant
20220101031JC. (Corresponding author: Xiubin Yang.)

Mo Wu, Xiubin Yang, Zongqiang Fu, Jiamin Du, Tingting Xu, and
Ziming Tu are with the Changchun Institute of Optics, Fine Mechanics and
Physics, Chinese Academy of Sciences, Changchun 130033, China, and also
with the Daheng College, University of Chinese Academy of Sciences, Beijing
100039, China (e-mail: yangxiubin@ciomp.ac.cn).

Haoyang He is with the School of Optics and Photonics, Beijing Institute
of Technology, Beijing 100081, China.

Digital Object Identifier 10.1109/LGRS.2023.3257850

(DPS), which can detect sparsely distributed density peaks in
an image. However, these methods are still susceptible to false
detections when objects in the background are highly similar
to small targets, as they only use spatial information.

Popular existing sequential methods treat multiple frames
in a sequence as a whole, introducing the local contrast
space into 3-D. Related works include spatial-temporal local
contrast filter (STLCF) [5], spatial–temporal local difference
measure (STLDM) [6], and novel spatiotemporal saliency
method (NSTSM) [7]. Although the mentioned methods
exploit spatial–temporal correlations in different ways, outlier-
based methods still face high false positive rates when dis-
turbed by point-like background features [8]. The time-domain
difference (TDD) method [9] can effectively suppress point-
like background interference, but its limitations are obvious.
Slow-moving target will be suppressed in the difference image,
resulting in missed detection. One target produces two spots
in a difference image, resulting in false detections [10].

We propose a novel sequential method for detecting moving
infrared targets, which addresses the limitations of TDD.
Unlike previous methods that directly detect Gaussian distribu-
tion patterns, our proposed method identifies adjacent positive
and negative peak pairs (P-NDPs) in the registered difference
images to construct short and long sparse trajectories. Con-
sidering that using only short trajectories may miss slowly
moving targets, while using only long trajectories may result
in false alarms due to sensitivity to noise, we incorporate
homography transformation based on motion continuity to
correlate sparse trajectories across frames, thereby preventing
the suppression of slow-moving targets.

Our method is based on three assumptions about small
targets: 1) the imaging distance is far; 2) the target structure
is approximately a Gaussian distribution; and 3) the target is
rare in the whole image with slow and continuous movement
relative to the background [11]. Because of the first assump-
tion, the target and the background can be regarded as lying on
the same plane in the distance, which ensures that images can
be registered using homography transformation. The latter two
assumptions are used to extract sparse trajectories and describe
the optical flow consistency of the trajectories.

II. PROPOSED METHOD

A. Overview

The flowchart of the proposed method is shown in Fig. 1.
Based on the sparsity of the target, DPS introducing local
contrast (DPS-LC) is used to search for P-NDPs, which
constitute the sparse trajectories. Subsequently, the similarity
measure and the optical flow consistency of the trajectory are
fused to describe the sparse trajectory intensity, which is used
for trajectory growth. Then, the real target is extracted by
trajectory filtering.
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Fig. 1. Flowchart of the proposed detection method.

Fig. 2. (a) Difference model of the target whose moving distance is σ , 2σ ,
and 3σ . (b) Local structure for calculating density-distance for p.

B. Extract Sparse Trajectory
1) Time Domain Difference: Ideally, the difference images

contain the target component only. According to previous
research, the small target can be modeled as a 2-D Gaussian
function. The difference model of moving target can be
expressed as

diffi j = g(x, y, xi , yi ) − g(x, y, x j , y j ) (1)

g(x, y, xi , yi ) = A exp
(
−(x − xi )

2/2σ 2
x − (y − yi )

2/2σ 2
y

)
(2)

where g is the Gaussian function, A is the peak value of
the target area, (xi , yi ) is the center position of the target
in the i th frame, and σx and σy are the horizontal and vertical
parameters of the target, respectively. Fig. 2(a) shows the
3-D difference model of the moving target, including two
adjacent peaks: the positive peak ωp in convex region and the
negative peak ωn in depression area. If the moving distance
of the target is larger than σ , more than 50% of the energy
will be retained in each peak. We can extract the trajectory of
target by using the high-intensity P-NDPs, which are rare in
the background.

Taking the kth frame as an example, homography transform
is used to warp fk to the perspective of fk− 1. The warped
image is denoted as fk,k−1. To prevent the slow-moving target
from being suppressed, we obtain difference images diffk,k−1
and diffk,k−N simultaneously for detecting sparse trajectories,
as shown in the following equations, which ensures that the
motion target with speed larger than σ /N (pix/frame) can be
detected:

diffk,k−1 = fk,k−1 − fk−1 (3)
diffk,k−N = fk,k−N − fk−N . (4)

2) Density Peaks Searching Introducing Local Contrast:
Based on the sparsity of the small target, we use DPS [4]
to search for positive and negative peaks in difference image.
To avoid the target being suppressed by nearby high-brightness
clutter, the local contrast is introduced into DPS. The density
distance of pixel p is redefined as

δp = dpq +

∑
t∈8pq

(ρp − ρt )/r (5)

q = arg min
q ′

(dpq ′) (6)

where d(p, q) represents the Euclidean distance between p
and q, ρ represents the density, and 8pq is the intersection of
the line lpq between p and q and the local window, as shown
in Fig. 2(b). The density peak index of each pixel is denoted
by γ . To obtain as many outliers as possible in ρ–δ space, the
k-nearest neighbor distance (dk−NN) is used to describe the
outlier degree of each pixel

dk-NN(p) =

∑
q∈k-NN(p)

∣∣γp − γq
∣∣. (7)

Finally, all peaks obtained are expressed as

� =
{
(x p, yp)|dk-NN(p) > std(dk-NN)

}
. (8)

3) Sparse Trajectory: DPS-LC is applied to diffk,k−1 and
−diffk,k−1 to obtain positive peaks �pos and negative peaks
�neg. Positive and negative density peaks of which distance
are smaller than the maximum optical flow length constitute
short sparse trajectories between fk−1 and fk . Specifically, if a
density peak pair satisfies: ωi ∈ �neg, ω j ∈ �pos, and d(ωi ,
ω j ) < max(|0k−1,k |), the short trajectory Ts they constitute is

Ts =
{
ϖ k−1, ϖ k} (9)

where 0 is the Farneback optical flow, ϖ k−1
= ωi and

ϖ k
= Hk− 1,kω j , and Hk−1,k is the homography matrix from

fk−1 to fk . Similarly, the P-NDPs in diffk,k− N form long
sparse trajectories Tl . The track points inside Tl are obtained
by interpolation

Tl =
{
ϖ k−N , . . . ,ϖ k−1, ϖ k} (10)

ϖ k−n
= Hk−N ,k−n

(
ωi + (N − n)

(
ω j − ωi

)
/N

)
, 0 ≤ n ≤ N .

(11)

We refer to the endpoints of sparse trajectories as “real
points,” and the internal points obtained by interpolation as
“imaginary points.” The type of trajectory point ϖ is denoted
by the symbol P(ϖ)

P(ϖ) =

{
1, if ϖ is a real point
0, else.

(12)

C. Sparse Trajectory Intensity
Sparse trajectory intensity is used to describe the likelihood

that a sparse trajectory is a real moving target, which combines
similarity measures and optical flow consistency.

1) Similarity Measure: For a sparse trajectory T composed
of a pair of density peaks (ωi , ω j ), the local areas of size
m × m, which have center on ωi and ω j , are denoted by Bi

0
and B j

0 , respectively. Referring to the model in Fig. 2(a), the
convex area Bi

0 and the concave area B j
0 formed by the same

target must be similar. In addition, both Bi
0 and B j

0 are quite
different from the adjacent subblocks Bi

1−8.
Wasserstein distance is used to describe the similarity of

central blocks. For two distributions µ and ν, their Wasserstein
distance is

W (µ, ν) = inf
χ∈5(µ,ν)

∫∫
χ(x, y)d(x, y)dxdy (13)

where χ is the joint distribution of µ and ν. We divide the pix-
els in Bi

0 and B j
0 into m2 gray-scale intervals. Their gray-scale
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distribution is expressed as µi and ν j . The similarity Si j of
Bi

0 and B j
0 is defined as follows:

Si j
= exp

(
−W

(
µi , ν j)). (14)

Structural dissimilarity and gradient flux [12] are used to
indicate the difference between B0 and peripheral subblocks.
The structural dissimilarity between the peripheral subblock
Bi

t and the central block Bi
0 is

Di
= mint

((
std

(
ei

t0

)
− std

(
ei

0

))
/std

(
ei

t0

))
(15)

where ei
0 and ei

t0 represent the vectorized Bi
0 and [Bi

0, Bi
t ].

Gradient flux is used to evaluate the number of vectors flowing
into or out of the closed area, and the flux in the convex area
is often a small negative value. To obtain the gradient flux of
B0, the 2-D Gaussian function (2) is used to fit B0. Denoting
the least squares estimates of parameters in (2) with ( Â, x̂ , ŷ,
σ̂ x , and σ̂ y), the fitted surface without offset is denoted as

ĝ(x, y) = Â exp
(
−x2/2σ̂ 2

x − y2/2σ̂ 2
y

)
. (16)

The maximum gradient flux of ĝ is taken as the gradient flux
of B0, as shown in the following equation:

F = max
C

∮
C

|F · n|ds, where C :z = ĝ(x, y), z > 0 (17)

where F can be obtained by

F = 2π Â
(
1 + r2

C

)
/(rC e) (18)

where rc = σ̂ x /σ̂ y is the aspect ratio of C . The local structural
difference is defined as

Di j
= min

(
Di , D j)

× min
(

F i , F j). (19)

The similarity measure is defined as the product of the
similarity of central blocks and local structural difference,
namely,

SM = Si j
× Di j . (20)

2) Optical Flow Consistency: Trajectories containing real
objects are usually consistent with optical flow. The optical
flow consistency of a trajectory can be expressed as

FC = vi j
· 0(ωi )/ max

(∣∣vi j
∣∣, |0(ωi )|

)2
(21)

where vi j represents the vector from ω j to ωi , and 0(ωi )

represents the optical flow of ωi .
Finally, the sparse trajectory intensity is expressed as

Ist = (FC + 1) × SM/2. (22)

From (22), it can be seen that trajectories with larger Ist are
more likely to be formed by real targets. The intensity of a
trajectory point ϖ in T is denoted by the symbol I(ϖ), which
is equal to the intensity of T .

D. Trajectory Growing Strategy
To obtain the complete trajectory of the target, a trajectory-

growing strategy is introduced. Let 3k
= {T k1 , . . . , T k

n } denote
the sparse trajectory list composed of all sparse trajectories
extracted from fk , and let L denote the list of candidate
trajectories. When k = 2, let L = 3k . When k > 2, the sparse
trajectories in 3k are matched with candidate trajectories in
L. Let T k

i = {ϖ k− N (i), . . . ,ϖ k} denote be a trajectory in
3k , and L j = {lk− N ( j), . . . , lk−1)} denote a trajectory in L.

Fig. 3. Trajectory growing strategy. (a) Short trajectory is matched with
the candidate trajectory. (b) Long trajectory is fully matched with the
candidate trajectory. (c) Long trajectory is partially matched with the candidate
trajectory. Real and imaginary points are represented as solid and hollow
circles, respectively. The trajectory points corresponding to �pos and �neg are
marked with orange and green, respectively. The matching trajectory points
are marked with blue ellipses.

The trajectory matching rule is: if there exists a ∈ [1, N (i)],
such that for any b ∈ [a, N (i)], d(ϖ k−b, lk−b) < R, T k

i and L j
are matched, then, ϖ k− b and lk−b are called matching points.
The position of the last trajectory point that matches T k

i and
L j is denoted by α = min(a). α = 1 means that T k

i and L j
are fully matched, and L j grows as L j = {lk− N ( j), . . . , lk−1),
ϖ k}. α > 1 means that T k

i and L j are partially matched. L j
is split into two trajectories, one of which is the trajectory
L j = {lk− N ( j), . . . , lk−α , ϖ k−α +1, . . . ,ϖ k} grown to the
kth frame, and the other is the original trajectory L j =

{lk−N ( j), . . . , lk−1)
}. Then, update the type and intensity of

the trajectory point in L j . For matching points ϖ k−b and
lk−b, let I(lk−b) = max[I(ϖ k−b), I(lk−b)] and P(lk −b) =

P(ϖ k −b)|P(lk− b). Specifically, Fig. 3 shows three trajectory
growth examples. As shown in Fig. 3(a), if the candidate
trajectory matches a short trajectory, the trajectory point of
the kth frame of the short trajectory is added to L j . I(lk−1) =

max[I(ϖ k−1), I(lk−1)] and P(lk−1) = P(ϖ k−1)|P(lk−1). If the
candidate trajectory matches the long trajectory, there are two
cases depending on the value of α. As shown in Fig. 3(b),
if α = 1, the candidate trajectory exactly matches the long tra-
jectory. Since the endpoint ϖ k−N (i) of the long trajectory is a
real point, it also becomes a real point, that is, let P(lk− N (i)) =

P(ϖ k− N (i))|P(lk− N (i)). When α > 1, as shown in Fig. 3(c).
The candidate trajectory is split into two trajectories. For the
matching points in the grown trajectory L j , let I(lk−b) =

max[I(ϖ k−b), I(lk−b)] and P(lk−b) = P(ϖ k−b)|P(lk−b).

E. Trajectory Filtering

Considering a candidate trajectory L j = {lk−N ( j), . . . , lk)}
in L, its average intensity are defined as

M =
1

N ( j) + 1

N ( j)∑
i=0

I(ϖ) × P(ϖ). (23)

The average intensity of the last five trajectory points of L j
is denoted with M̃ , and the proportion of real points in L j is
denoted with η. The following conditions are used to select
the true trajectory: 

M > Th
M̃ > Th
η > 80%
N ( j) ≥ 2N

(24)

where Th is a fixed threshold. The trajectory point of the
selected real trajectory in fk is the target detected in this frame.
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Fig. 4. Detection results of our method in the 15th frame of all sequences. First row: original images. Second and third rows: difference images diffk,k −1
and diffk,k −N . Positive and negative peaks are marked with orange and green circles, respectively. Missed trajectories are marked with white lines. Fourth
row: sparse trajectories. Fifth row: candidate trajectories. Sixth row: detection results.

TABLE I
DETAILS OF FOUR IR TARGET DATASETS

III. EXPERIMENTAL RESULTS

We conduct comparative experiments on four datasets to
evaluate the effectiveness and robustness of our method.
The details of the datasets are recorded in Table I. Each dataset
contains multiple sequences with the same target features.
All the datasets used meet the three assumptions about small
targets mentioned in the introduction. All experiments were
performed using MATLAB 2020a on a computer with an
Intel i5 CPU and 16 GB of memory. The receiver operating
characteristic curve (ROC) and area under the curve (AUC)
are used to evaluate the detection performance of methods.

According to the three-layer window theory, the core layer
of a target is smaller than 5 × 5, so the size of subblock B in
Fig. 2(b) is set to 5 × 5 to cover the core part of the target.
In the following experiments, the forward frame number N
for extracting long sparse trajectories is set to 4, R is set to 5,
and Th is set to 50.

Fig. 4 presents the detection results of our method on the
15th frame of all sequences. The second and third rows show
the difference images diffk,k−1 and diffk,k− N , respectively.
It can be seen that the background in the difference image is
well suppressed. The 3-D images of local area near the target
are given in the upper right corner of the difference images.
P-NDPs formed by moving targets are prominent on the
difference image, which means that our method of extracting
sparse trajectories is reasonable. For sequences containing fast-
moving targets, such as S1 in Dataset1 and S1 in Dataset3,
the positive and negative peaks in diffk,k− N are further apart
than those in diffk,k− 1. The long sparse trajectories formed by
the target are not extracted, but the short sparse trajectories
are successfully extracted in diffk,k− 1, which is in line with
our original design intention. In addition, it can be seen in the
fourth row that although the short and long sparse trajectories

Fig. 5. Examples for results comparison for a scene with point-like
background features. Missing and false detections are marked with green and
yellow square boxes, respectively.

are not extracted simultaneously, the full trajectory of the
target can be obtained by our trajectory growing strategy, and
its average trajectory intensity is much higher than that of the
false trajectory.

The baseline methods we compare include NSTSM [7],
tensor fibered nuclear norm based on the Log operator (Log-
TFNN) [13], multiple subspace learning and spatial-temporal
patch-tensor (MSL-SIPT) [14], infrared small-target detec-
tor (ISTD) [15], edge and corner awareness-based spatial–
temporal tensor (ECA-STT) [16], STLCF [5], and STLDM [6].
Log-TFNN is a single-frame detection method, and others are
the sequential detection methods. Fig. 5 shows a comparison
of detection results in complex scenes from Dataset 3. Due to
the presence of multiple building spots and objects similar to
small targets in the scene, the baseline methods all suffer from
false detections, ignoring the dim real target. However, our
method can detect the target accurately. To better demonstrate
the advantages of our method, we compared the detection
results of different methods on sequence 22 of the ISD dataset
[17] containing a slow-moving target. As shown in Fig. 6,
our method successfully detected all slow-moving targets that
were missed by other methods. Fig. 7 shows the ROC curves
using eight methods. It can be seen that our method achieves
the best detection performance on Dataset 1, Dataset 3,
and Dataset 4 compared with baseline method. Most of the
sequential methods achieve good results on Dataset 2 due to
constant background and the higher SCR of the scene. The
AUC value of our method is only 0.0001 lower than the best-
performing MSL-SIPT. However, only our method performs
well in complex scene of Dataset 3, with Rd greater than
0.99 when R f is low. In addition, most sequential methods

Authorized licensed use limited to: Changchun Inst of Optics Fine Mechanics & Physics. Downloaded on April 28,2024 at 08:41:52 UTC from IEEE Xplore.  Restrictions apply. 



WU et al.: INFRARED MOVING SMALL TARGET DETECTION BASED ON CONSISTENCY OF SPARSE TRAJECTORY 6003605

Fig. 6. Detection results for a sequence containing a slow-moving target.

Fig. 7. (a)–(d) ROC curves of eight methods in datasets 1–4.

TABLE II
AVERAGE COMPUTATION TIME PER FRAME (SECONDS)

perform better than Log-TFNN, which only utilizes spatial
information.

We have presented the running times of all methods in
Table II, where ISTD benefits from acceleration by the
GTX 1650 GPU. Ours performs slightly slower than ISTD
and STLCF. This is because our method uses two DPS to
extract sparse trajectories, and calculating density distances
for all pixels in the entire image is time-intensive. However,
we have leveraged GPU acceleration to speed up this process,
allowing our method to outperform all other methods in terms
of speed.

IV. CONCLUSION

In this letter, an infrared small target detection method based
on the consistency of sparse trajectories is proposed. The main
idea is to detect sparse trajectories of target on registered
interframe difference images to exploit temporal contextual
information. To prevent slow-moving targets from being sup-
pressed in the difference image, both long and short sparse
trajectories are used for trajectory growth. Experiments show
that this strategy is reasonable, and our method can effectively
detect targets of different sizes and speeds. Compared with
the existing single-frame and sequential methods, our method
has better detection ability in changing complex backgrounds.
In future work, the direction consistency of sparse trajectories
can be used to describe the trajectory intensity, which can
improve the robustness to temporal noise.
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