
Multi-exposure image fusion of dynamic scenes using
consistency detection and weighted least squares filtering

Fang Xu,a,* Jinghong Liu,a Tenglong Wang,b Xuan Wang,a

Hui Sun,a and Hang Rena

aChinese Academy of Sciences, Changchun Institute of Optics, Fine Mechanics, and Physics,
Key Laboratory of Airborne Optical Imaging and Measurement, Changchun, China

bNortheast Electric Power Design Institute Company Limited of China Power Engineering
Consulting Group, Changchun, China

Abstract. The high dynamic range image obtained by multi-exposure image fusion (MEF)
contains more detailed information, which has broad application prospects and crucial practical
significance in many fields. However, due to the introduction of the ghosting artifacts caused by
object movement and camera shake, MEF in the dynamic scenes has always been a challenge. To
address this problem, we designed a deghosting method for MEF. The over- and under-exposed
images are corrected by intensity mapping and consistency detection to obtain the aligned latent
images. Then the high- and low-frequency components of the latent images are generated using
weighted least squares filtering. The blending weights are calculated based on the image lumi-
nance and the exposedness function. These frequency components are integrated into the final
deghosted image with more texture details and vivid color. A comprehensive evaluation experi-
ment is carried out, proving that the proposed method has a better visual effect and stable per-
formance than the state-of-the-art deghosting MEF methods. © 2023 Society of Photo-Optical
Instrumentation Engineers (SPIE) [DOI: 10.1117/1.OE.62.1.013103]
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1 Introduction

The luminance span in natural scenes is usually large, ranging from starlight at night to dazzling
sunlight, with a brightness range of nine orders of magnitude.1 Restricted by the optical design
parameters of the lens, the sensitivity, the full well charge of the detector, and other factors, the
dynamic range of the existing imaging equipment is far lower than that of the natural scene.
Therefore, it is difficult to record the details of different brightnesses in the background through
one single shot. Moreover, many factors easily affect the scene, such as weather, solar altitude
angle, clouds, and object characteristics. The bright object in the image is prone to be over-
exposed, resulting in a severe loss of information. The dark area may be under-exposed, making
the detail unrecognizable. As a result, over- or under-exposed frequently occurs, leading to
unsatisfactory imaging results. Multi-exposure image fusion (MEF) technology provides a sim-
ple and efficient way to expand the dynamic range of the imaging device. A set of low dynamic
range images with different exposures can be integrated into a single high dynamic range
(HDR)-like image, retaining the objects’ details with different reflectivities in the scene.2,3

The most static MEF approaches assume that the source images are perfectly aligned.
However, it may be inaccurate in practice, and there are inevitably moving objects with various
trajectories. Because of the time difference in the image acquisition, the position and shape of the
moving objects are variable in the image sequence with different exposures. If these images are
fused directly, some issues, such as blur, ghosts, and translucent areas, may appear in the fused
result,4,5 which will seriously affect the visual quality of the fused image, as shown in Fig. 1.
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Therefore, one of the biggest challenges in the current MEF research is to remove the motion blur
and ghosts when there is local or global motion in between input exposures.6 Many MEF studies
have been developed to remove the ghosting artifacts and improve the visual quality of the fused
image from a different perspective. They lie in two aspects: detecting the ghosting artifacts and
eliminating them. Therefore, the current MEF algorithms in the dynamic scenes can be mainly
divided into the following categories: moving object removal and moving object retention.

Some MEF approaches remove all moving objects by the static background estimation,
where only a tiny part of scene contains moving objects and most parts of the image are static.
No reference image is selected in this kind of method. Khan et al.7 designed a deghosting MEF
method and iteratively estimated the probability of each pixel belonging to the background for
adjusting the weights. Similar to this iterative process, Pedone and Heikkil8 increased the like-
lihood that the pixels belonged to the static background through an energy minimization step.
Although some ghosting artifacts can be reduced, their technique cannot cope with camera
shake. Zhang and Cham9 detected whether there was a moving object according to the gradient
direction consistency of the input image. However, the robustness may be insufficient when the
scene changes frequently. Li et al.10 approximated the nonuniform pixels based on the intensity
mapping (IM) function and bidirectional normalization approach. They further eliminated the
ghosts and improved the quality of the fused image using two-round hybrid correction. However,
the acceleration of the proposed filter may be an issue. Wang et al.11 measured the difference
between the multi-exposure images based on visual saliency. They introduced bilateral motion
detection to improve the moving region determination accuracy and avoid the ghosting artifacts
in the fused results. Qu et al.12 calculated the weight maps using the image’s luminance and
chromaticity in the YIQ color space. The image difference and superpixel segmentation were
utilized to refine the weight maps and decrease the weight of moving objects to eliminate ghosts.
Finally, they obtained the fused image with detail enhancement based on the improved Laplace
pyramid framework. This method was suitable for the scenes with only a small number of mov-
ing objects, and the most were stationary. However, it was time-consuming and could not deal
with the scenes with large motion or fast change. Shim13 adopted the gamma-corrected exposure
time ratio between the multi-exposure images to remove the moving object in the fused result.
This algorithm was fit for removing some fast-moving objects to construct a ghost-free output.
The slow-moving objects may not be eliminated because their background information was
missing, and some ghosts were still visible.

The most deghosting MEF methods preserve the moving objects consistent with the refer-
ence image in the fused result. They focus on finding the local relationships between the regions
affected by the moving objects and reconstructing these pixels. According to the different char-
acteristics of the algorithms, we can divide them into the following categories.

In one class, the dynamic regions of one or more input images are selected as the guide to
removing ghosts. Jacobs et al.14 introduced entropy mapping to detect ghosts in the moving area
with low contrast without knowing the camera curve. However, the alignment may fail when the
object movements are relatively fast or the texture of the moving region is flat. Granados et al.15

designed a deghosting approach based on the Markov random field and selected a reference
image for guiding the dynamic content. Since the moving region only came from a single image,
some translucent areas may be still introduced. Wang and He16 proposed a deghosting MEF
algorithm based on an improved difference strategy. Before detecting ghosts, the exposure
of each source image was normalized to the brightness consistent with the reference image.

Fig. 1 Different types of fused results with ghosting artifacts.
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When the region’s brightness was not ideal, they selected two reference images and matched
other available exposure.

The second class of methods utilizes a feature matching strategy to remove the ghosts.
Zimmer et al.17 exploited an alignment method based on optical flow and created a super-
resolution image. The dense displacement fields with subpixel accuracy were generated.
This method relied on a coarse to fine warping scheme to deal with significant displacement.
However, since some small objects may disappear on the rough horizontal plane, it is hard to
estimate the large displacement of the small objects. Liu et al.18 introduced an MEF method and
used dense scale-invariant feature transform (SIFT) descriptors as the activity level metrics to
remove the ghosts in the dynamic scenes, which could be used in both static and dynamic scenes.
This method first constructed three weight items: local contrast, exposure quality, and spatial
consistency. Then these three parts were combined to estimate a weighted map for each source
image and performed weighted fusion. Although their algorithm can create some fused outputs
without ghosts, it may not produce satisfactory results when the moving objects appear in multi-
ple input images or the background moves. Based on this research, Hayat and Imran19 developed
an MEF approach based on dense SIFT descriptor and guided filtering. There were two main
differences compared with the algorithm in Liu’s method.18 On the one hand, they used histo-
gram equalization and the median filter to calculate the color dissimilarity feature replacing Liu’s
spatial consistency module. On the other hand, guide filtering was applied to remove the noise
and the discontinuity in the initial weights. Although the ghosting artifacts of Hayat’s method
are fewer than that of Liu’s, they are still not entirely removed in some scenes. Zhang et al.20

proposed two consistencies for matching the reference image with the source images to generate
the latent images: mutual consistency based on histogram matching and intraconsistency based
on superpixel segmentation. They retained all details and yielded the final deghosted result by
the static weighted fusion.

Other algorithms based on image patch matching detect the motion-changed region by the
information between the source images. Sen et al.21 introduced an energy minimization HDR
deghosting approach based on image patch matching, which jointly performed the image align-
ment and reconstruction. It can remove ghosts very well, but the details are slightly worse.
Following their work, Hu et al.22 utilized the histogram and brightness mapping function to
design a patch match-based approach. They generated the latent images by minimizing the
energy function and solved the ghosting problem in MEF. However, some halos may be pro-
duced in some scenarios. Ma et al.23 performed the pixel consistency mapping based on the
directivity of the image patch structure vector. This method outperforms several state-of-the-art
algorithms, and there are very slight ghosting artifacts in the dynamic scenes. After that, some
research studies24–26 made some improvements based on this theory, which most can generate
high-quality images and overcome the blurring in the fused images for the dynamic cases. In
addition, Li’s study25 results in successfully reduced execution time.

In recent years, with the significant success of deep learning in image processing,27,28 more
and more researchers have applied it to MEF, and some have tried to remove the ghosting arti-
facts in the dynamic scenes. Prabhakar et al.29 designed a convolution and recursive structure
network for the ghost removal in MEF, which can fuse image sequences with different frame
numbers. Yan et al.30 proposed an end-to-end network to remove the ghosts, which integrated the
image context and the corresponding gradient information. However, these methods need a large
number of training samples, and the training database should have real images in the dynamic
scenes. In addition, the model is complex, and the generalization ability is not strong.

In this paper, we present an effective deghosting MEF method in the dynamic scenes for
obtaining HDR-like images without preprocessing or motion estimation. It is mainly composed
of image alignment and image fusion. First, we utilize IM and consistency detection to obtain the
aligned latent images. Then we decompose the latent images based on weighted least squares
(WLS) filtering and calculate their corresponding blending weight maps to get the final fused
result. The main advantages of this paper are listed as follows.

1. The proposed method can preserve helpful features by selecting an appropriate reference
image. The ghosting artifacts caused by the object motion and camera shake are effectively
removed and it shows strong robustness to the ghosts in various dynamic scenes.
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2. Based on WLS filtering and optimized evaluation function derived from both global and
local exposedness, the fused image preserves the details of dark and bright regions. It can
reflect the complete information of the actual scene and achieve good visual effects.

In addition, a comprehensive evaluation experiment is carried out. We evaluate the perfor-
mance of the proposed method and the other six deghosting MEF methods on 30 image sequen-
ces in the dynamic scenes from subjective and objective aspects. Relevant materials, including
test image sequences, fused results, and relevant comparison algorithm codes, have been pro-
vided with download links to make it easier to deghosting MEF research in the future.

The remainder of this paper is organized as follows. Section 2 introduces the proposed MEF
method, including image alignment and image fusion. We present a comparative study between
the proposed method and the other methods in Sec. 3. Section 4 concludes the proposed method.

2 Proposed Method

The algorithm framework proposed in this paper is shown in Fig. 2. The proposed method can
analyze the relationship between the reference and input images. We align the over- and under-
exposed images through IM and consistency detection. The constraint conditions are formulated
to correct the local color distortion and obtain the latent images with more accurate details.
The latent image’s low- and high-frequency components are extracted using WLS filtering.
Combined with the brightness of the latent image, the blending weight functions are calculated.
Then the final ghost-free image is generated. In the meantime, RGB’s three color channels are
jointly handled to make the fused image more vivid.

2.1 Reference Image Selection

The reference image determines the moving objects that appear in the fused result and further
affects its visual quality. Input the multi-exposure image sequence Ik (k ¼ 1; : : : ; K), K is the
total number of the input images, the pixel values are first normalized to the [0, 1] range.
To select the appropriate reference image, we rearrange the input images in ascending order
according to their brightness and pick the one sorted in the middle as the reference image
Iref1, as shown in Eq. (1). In addition, all source images’ overall luminance is calculated, and
the image with appropriate exposure is chosen as the reference image Iref2, which contains
relatively few over- and under-exposed pixels. Comparing Iref1 with Iref2, if their ranking number
difference is>2, it indicates that the overall luminance of the image sequence is relatively high or
low, and Iref1 is selected as the reference image. Otherwise, Iref2 is chosen:

EQ-TARGET;temp:intralink-;e001;116;301Iref1 ¼
�
IKþ1

2
K ¼ odd;

IK
2

K ¼ even: (1)

Fig. 2 The algorithm framework proposed in this paper.
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After choosing the appropriate reference image, the input image whose luminance is higher
than the reference image is taken as the over-exposed image. Otherwise, it is regarded as an
under-exposed image.

2.2 Intensity Mapping

For the over-exposed image, the IM relationship between these images and the reference image
is established to obtain the latent image. It can be obtained by establishing the IMmodel between
the images with different exposures as follows:

EQ-TARGET;temp:intralink-;e002;116;627Ik ¼ τðIrefÞ; (2)

where τðIÞ ¼ g−1ðkgðIÞÞ is the IM function and indicates the radiation relationship between two
images.31 I is the scene brightness, g is the camera response function, and k is the exposure
coefficient. The IM relationship can be established using the intensity histogram of the image,
as shown in Fig. 3. According to the histogram matching, the luminance of the reference image
can be mapped to the same range as the over-exposed image to obtain the latent image of the
over-exposed image.

2.3 Consistency Detection

The under-exposed image often contains scene information conducive to the final fusion.
However, these regions may be saturated in the reference image, resulting in detail loss.
We found that if the latent image is calculated directly through the IM relationship, it may lead
to information loss or color distortion. Based on the research foundation in Ma,23 we compute
the direction information of the image structure vector to realize motion consistency detection.
The moving region consistency detection process is illustrated in Fig. 4. A set of color image
patches fgkg ¼ fgkj1 ≤ k ≤ Kg are extracted from the same spatial position of multi-exposure
image sequence Ik using the moving window with a fixed step length. gk is the vector of the
CWH dimension (C is three channels, W and H are the width and height of the image patch).
The signal structure Sk of the image can be calculated based on these variables. The motion
consistency detection could be converted into the direction consistency analysis of the signal
structure between the reference image and the source image. The inner product between the
signal structure of the reference image Sref and that of the sequence image Sk can be calculated
as follows:

EQ-TARGET;temp:intralink-;e003;116;320ρk ¼ STrefSk ¼
ðgref − ugrefÞTðgk − ugkÞ þ ϵ

kgref − ugrefkkgk − ugkk þ ϵ
; (3)

where k · k denotes the l2 norm of the vector. The consistency ratio ρk lies in ½−1;1�, and the
larger ρk is, the higher the consistency between Sref and Sk is. ugk is the mean brightness of gk,

Fig. 3 IM and latent image acquisition.
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and ugref is the mean brightness of gref . Sk is constructed by mean removal and brightness nor-
malization to ensure strong robustness to the exposure and contrast variations. The noise may be
included when the structure vector Sk is scaled to the unit length in the scene with low visibility.
Therefore, a parameter ϵ close to 0 is introduced, which boosts ρk to be close to 1 regardless of
the noise change.

To reject more motion inconsistent pixels, we introduce the structure consistency threshold
Tρ to binarize ρk. The inconsistent pixels in the image sequence can be observed in the black

region of the binary map B̂k:

EQ-TARGET;temp:intralink-;e004;116;458B̂k ¼
�
1; ρk ≥ Tρ;
0; ρk < Tρ:

(4)

To detect and correct the inconsistent pixels to the greatest extent, a judgment condition
based on mean intensity difference is introduced to reduce the ghosts further. We establish the
IM relationship between the under-exposed image Ik and the reference image Iref . The k’th
under-exposed image is mapped to the exposure level of the reference image to obtain the inter-
mediate image. The absolute value of the mean intensity difference of the image patch at the
same spatial position between the corresponding intermediate image and the reference image is
calculated, and a mean intensity difference threshold Tu is set:

EQ-TARGET;temp:intralink-;e005;116;328̆Bk ¼
�
1; jugk − u 0

gkj < Tu;
0; jugk − u 0

gkj ≥ Tu;
(5)

where u 0
gk is the mean brightness of the image patch in the intermediate image, which is obtained

by mapping the under-exposed image to the reference image.
The final detection result of motion consistency is

EQ-TARGET;temp:intralink-;e006;116;245Bk ¼ B̂k ·B̆k: (6)

The pixel set with Bk ¼ 1 indicates that the motion is consistent with that of the reference
image, and the image patch at the same position of the source image is retained. The pixel set
with Bk ¼ 0 means that the motion is inconsistent. The inconsistent pixels need to be corrected
in combination with the IM function to obtain the latent image Qk.

In addition, in some dynamic scenes, it is found that the brightness saturation and color
distortion may occur in the local region of the latent image obtained through the above steps,
as shown in the three areas marked in the third step in Fig. 4. Therefore, we designed another
abnormal pixel constraint to tackle this issue, and the improvement can be observed in the last
step in Fig. 4:

EQ-TARGET;temp:intralink-;e007;116;104Qk ¼
�
Ik Qk;1 ≥ τ1 or Qk;2 ≥ τ2 or Qk;3 ≥ τ3;
Qk else;

(7)

Fig. 4 The inconsistent motion detection and the abnormal pixel constraint.
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where Qk;1, Qk;2, and Qk;3 indicate the RGB’s color channels of the latent image. τ1, τ2, and τ3
are the color thresholds on three channels. The latent image mapped from the reference image to
the under-exposed image can be obtained through the above steps.

2.4 Image Decomposition Using WLS Filtering

After the input images are aligned, the luminance image Q̃k of the latent image is obtained
through the RGB color channel weighted sum. Then WLS filtering is used to accurately estimate
the low-frequency information of ~Qk, and the high-frequency component can be calculated
further. Their blending weights are, respectively, calculated for the final fusion.

WLS filtering is an effective edge-preserving filter that can smooth the image while main-
taining the image edge.32 Compared with other filters, WLS filtering can make the best
compromise between image blurring and sharpening. Therefore, we select WLS filtering as
a low-pass filter to estimate the low-frequency information of the latent images with different
exposures. Given an input image ~Qk, we calculate its corresponding filtered low-frequency
image L̃k, which is smooth and close to the image ~Qk as much as possible. The image L̃k can
be calculated by the following formula:

EQ-TARGET;temp:intralink-;e008;116;524

�
argmin

L̃k

�
ðL̃k − Q̃kÞ2 þ λ

�
wx

�
∂L̃k

∂x

�
2

þ wy

�
∂L̃k

∂y

�
2
���

; (8)

EQ-TARGET;temp:intralink-;e009;116;463wx ¼
����� ∂Vk

∂x

����
α

þ ϵ

�
−1
; (9)

EQ-TARGET;temp:intralink-;e010;116;427wy ¼
����� ∂Vk

∂y

����
α

þ ϵ

�
−1
; (10)

where the first item ðL̃k − Q̃kÞ2 ensures the similarity between the input and output images. The
smaller the distance between them is, the higher the similarity between the filtered and the latent
images is. In the second item, the degree of smoothness is achieved by calculating the partial
derivative, where wx and wy are the smoothing factors. λ is the regularization factor that main-
tains the balance between the two subformulas. The higher the λ value is, the smoother the output
image is. Vk is the logarithmic form of the input image ~Qk, namely Vk ¼ logð ~QkÞ. The index α
indicates the sensitivity to the gradient of the input image, and ϵ is a positive constant close to 0.

Once the low-frequency component ~Lk of the latent image is obtained, according to each
channel of the latent image, the high-frequency component ~Hk can be extracted:

EQ-TARGET;temp:intralink-;e011;116;288H̃k ¼ Qk − L̃k: (11)

2.5 Blending Weight Calculation and Fusion

The degree of exposure plays a significant role in preserving and revealing the details in MEF.
Based on a general exposedness function, we modify it slightly for low- and high-frequency
components to precisely reflect the global and local structures. The low-frequency component
is a comprehensive measure of the intensity of the whole image. We construct the blending
weights of this component to evaluate the exposure appropriateness based on the local and
global luminance.33 For the former, the local mean intensity at each pixel position is utilized
as the exposure feature to assess the local exposure quality. However, to maintain the structural
consistency between the low-frequency component and its weight map, the low-frequency
component itself is applied as the local exposure feature. For the latter, the global exposure
quality assessment of the k’th image ~Gk is calculated according to the luminance sum of
the whole image and the image size. The blending weights are obtained by combining these
two parts:
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EQ-TARGET;temp:intralink-;e012;116;735WL
k ¼ exp

�
−
�ðL̃k − 0.5Þ2

2σ2L
þ ðG̃k − 0.5Þ2

2σ2G

��
; (12)

where σL and σG are the Gaussian spread parameters. The first item preserves the local structure
with good exposure, and the second item encourages the consistency of spatial luminance of
the whole image.

For the high-frequency component of the image, the mean luminance of the small local
neighborhood at each pixel position is computed to evaluate its exposure quality. The weight
of the high-frequency component of the k’th latent image is calculated as follows:

EQ-TARGET;temp:intralink-;e013;116;626WH
k ¼ exp

�
−
ðh̃k − 0.5Þ2

2σ2H

�
; (13)

where ~hk is generated by convolving ~Qk with mean filtering.
After constructing the weights of all components of the latent images, the low-frequency

component ~Lk and the high-frequency component ~Hk are combined by weighted summation.
To reserve more color characteristics, the image color information is implicitly retained when
calculating the mean luminance. The RGB color channels are jointly processed during fusion to
obtain the final fused image with vivid color and ghost-free:

EQ-TARGET;temp:intralink-;e014;116;504F ¼
XK
k¼1

WL
k L̃k þ

XK
k¼1

WH
k H̃k: (14)

3 Experiment Results and Analysis

3.1 Experiment Setup

To verify the performance of the proposed deghosting MEF method, we test it in various rep-
resentative dynamic scenes. The multi-exposure images used in the experiment cover indoor,
outdoor, and different times, including moving object with different amplitudes and camera
shakes. The test source images used in this paper are mainly from below.

The proposed algorithm is compared with six typical deghosting MEF algorithms to evaluate
their effectiveness in the dynamic scenes. We select the method to be compared according to the
following principles: the algorithm has been developed in recent years, and its influence is high
in this field, i.e., the number of citations is relatively great. The source code is publicly available
and can be freely downloaded. We select six representative deghosting MEF methods in our
comparative study. Table 1 lists the details of the chosen method, including the origin and code
download links. For all of them, the default parameter settings are the same as those in the origi-
nal literature.

The parameters in the proposed method need to be set, including structural consistency
threshold Tρ; mean brightness difference threshold Tu; color threshold τ1, τ2, and τ3; WLS

Table 1 The methods for the comparison.

Method Year Link of source code

Liu18 2015 https://github.com/yuliu316316/DSIFT-EF

Hayat19 2019 https://github.com/ImranNust/Source-Code

Ma23 2017 Ref. 34

Qi24 2020 https://github.com/zhiqinzhu123/HDR-Multi-exposure-image-Fusion-Source-Code-

LH2025 2020 https://github.com/xiaohuiben/fmmef-TIP-2020

LH2126 2021 https://github.com/xiaohuiben/MESPD_TCSVT-2021
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filtering parameters λ and α; and Gaussian spread parameters σL, σG, and σH. Tρ and Tu should
retain consistent motion and remove inconsistent movement as much as possible. Through the
analysis of the latent image generated in the various dynamic scenes, Tρ ¼ 0.8 and Tu ¼ 0.2 are
selected, which can ensure the minor color distortion and residual shadow. The color thresholds
τ1, τ2, and τ3 can be set to 0.98, 0.98, and 0.9 on the fused visual effect empirically. The selection
of λ and α will be described in Sec. 3.4 in detail. For Gaussian spread parameters for calculating
the blending weights, the values of σL, σG, and σH are inherited from the research results in Ma23

and Nejati.33 They are equal to 0.5, 0.2, and 0.12, respectively.

3.2 Subjective Qualitative Evaluation

High-quality fused images should have an excellent visual effect and without ghosting artifacts
or residual shadows. In this part, combined with the image dataset given in Table 2, a test dataset
with different exposures in the dynamic scenes is established, including 30 groups of image
sequences. We have disclosed the source image sequences and 210 fused results from the pro-
posed method and six comparison methods, and interested readers can freely download them
(in Ref. 38). Three sets of fused results are chosen for detailed discussion and analysis as shown
in Figs. 5–7.

Figure 5 illustrates the final fused images are different when different reference images are
determined. For example, there is no vehicle in the reference image of Hayat,19 and the reference
images selected by other methods all have moving cars. The fused image given by Liu18 has a
poor effect on the ghost removal, and there are some translucent and dark regions. Other methods
are relatively effective in ghost removal. Observing the local enlarged view in Hayat,19 the details
of the central location of the Sun are not recovered well, and the central point of the Sun and
the nearby cloud are unclear. Ma,23 LH20,25 and LH2126 have color distortion near the Sun, and

Table 2 Image dataset in the dynamic scenes.

Dataset Year
Image

sequences
Total

number Link of source code

Dataset35 2016 17 153 Ref. 36

IQASet23 2020 20 84 https://github.com/h4nwei/MEF-SSIMd

HDRRNN29 2021 84 588 Ref. 37

Fig. 5 The qualitative comparison of different methods on the “cars” image sequence and local
enlarged view: (a) source image sequence, (b) proposed, (c) Liu, (d) Hayat, (e) Ma, (f) Qi,
(g) LH20, and (h) LH21.
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the color of the upper part of the sky in LH2025 is dark. In addition, a small part of the front wheel
is missing in their fused result. Although no color distortion occurs near the Sun in Qi,24 there is a
faint halo around the cars, and the part of the front wheel is lost. The comprehensive comparison
results show that the performance of the proposed method is the best, which can preserve more
details. Moreover, the halo effect is suppressed.

Fig. 7 The qualitative comparison of different methods on the “lady” image sequence and local
enlarged view: (a) source image sequence, (b) proposed, (c) Liu, (d) Hayat, (e) Ma, (f) Qi,
(g) LH20, and (h) LH21.

Fig. 6 The qualitative comparison of different methods on the “Wroclav” image sequence and
local enlarged view: (a) source image sequence, (b) proposed, (c) Liu, (d) Hayat, (e) Ma,
(f) Qi, (g) LH20, and (h) LH21.
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As can be seen in Fig. 6, the proposed method, Ma,23 LH20,25 and LH2126 are effective in
ghost removal. The ghosts are not entirely removed and still exist in Liu,18 Hayat,19 and Qi.24

Moreover, the luminance of the ground in Hayat19 is still high, and the details are not well recov-
ered. Although the ghost removal effect is good in LH20,25 it is a little poor in the detail recovery
of local regions, such as the luminance of the table and the ground is still high. There is partial
distortion in the color recovery of the sky area in Ma.23 On the whole, the details of the proposed
method and LH2126 are well preserved in the bright and dark areas. However, the color of some
areas of the sky in LH2126 is not unevenly recovered. The color of the region below the cloud is
darker, and the hierarchy is slightly worse, as shown in the green box in Fig. 6(h). In the local
enlarged view, it can be found that the facial contour and mouth area of the man in Ma23 are
slightly poor in detail. There are some blocking problems on the face and clothes of the man in
LH2025 and LH21.26 According to the details of the whole image and the local enlarged view,
the visual quality of the proposed method is the best.

Figure 7 illustrates the fused results from the lady who swings her arms in the indoor scene.
We can see that except for the proposed method and Ma,23 other methods have ghosts to varying
degrees. Among them, the ghosts in Liu,18 Hayat,19 and Qi24 are serious. Although the details
are recovered well in LH21,26 there are discontinuous blocks in the head and chest area of the
woman. The same problem exists in LH20.25 Although there are no apparent ghosts in Ma,23

there is a noticeable halo on the top of her head and dislocation in the chest area. Therefore,
the performance of the proposed method is optimal on the whole from the image sequence and
the local enlarged view.

In addition, we give two examples of deformable body motion to demonstrate the effective-
ness of the proposed method, as shown in Figs. 8 and 9. The fused results show that the ghost
artifacts can be effectively removed, and the texture and color details can be recovered well.

3.3 Objective Quantitative Comparison

There are few objective quantitative indicators for MEF in the dynamic scenes, and the most
researchers only adopted subjective evaluation.11,12,14,20,39–41 Some studies use the HDR-VDP-2
model to predict the quality of the fused image,42,43 and Qmos (mean opinion score) in this model
can evaluate the distortion between the fused image and the reference image. If the score is
larger, the image quality is higher. Otherwise, the image quality is worse. The Qmos scores
of 210 fused images are calculated and listed in Table 3, where the bold font indicates the highest

Fig. 8 The fused result on the “flag” image sequence: (a) source image sequence and (b) the
fused result.

Fig. 9 The fused result on the “candle” image sequence: (a) source image sequence and (b) the
fused result.
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score and the italic one means the second-highest score. It can be seen that the overall score of
the proposed method is the best on all test image sequences.

To more intuitively view the performance of each method on the test image sequences, the
Qmos scores in Table 3 are drawn in Fig. 10(a). From the distribution of each curve, we can see
the performance of these methods on 30 groups of test image sequences in the dynamic scenes.

Table 3 Quantitative comparisons of different deghosting methods on Qmos score.

Sequence Liu Hayat Ma Qi LH20 LH21 Proposed

Arch 42.1539 43.4479 43.8774 39.4118 43.8846 47.7516 56.4972

Brunswick 53.9745 39.1341 68.7604 34.9105 64.9440 73.2189 68.6200

Building 45.0889 35.6322 57.9390 54.6528 51.1381 55.1796 59.9514

Campus 50.7968 48.8127 68.5215 67.4566 49.3895 50.5085 72.1113

Cars 51.4744 41.4154 50.1511 49.4603 46.6479 49.3922 73.0031

Forest 66.6202 56.6106 70.5719 59.8429 68.8709 66.8502 70.7423

Lady 49.7846 45.1670 52.8730 51.0440 45.4192 51.1117 54.8218

Llandudno 37.1335 54.5771 65.0071 37.0104 56.7933 61.1436 64.6298

MarketMires2 56.9971 55.4768 51.1316 49.3215 66.5522 64.8403 73.8640

Men 38.9525 32.1070 37.6922 33.9290 32.6753 52.3410 58.4556

Office 33.3883 36.1874 33.2980 38.4133 34.6107 38.6722 46.9505

Playground 66.6578 62.6573 66.9124 62.6548 65.7661 67.2283 72.7180

ProfJeonEigth 60.3252 43.9002 54.8428 48.3970 42.7288 42.4942 60.9715

River 64.1139 56.1138 67.2512 65.4758 60.7846 68.4059 68.7286

Square 48.4465 39.0180 66.8230 38.6824 62.6895 65.3453 70.6387

Street 33.6765 26.5961 36.0854 30.7094 35.9272 36.2446 56.6738

Suoe 34.6099 33.2567 57.4005 50.6865 56.1674 60.8040 72.0869

Suon 45.3769 41.8485 60.9157 52.3933 58.0983 59.1014 72.2730

Suos 53.6372 47.2952 68.9225 54.9949 63.8709 66.5662 75.7899

Suow 61.1277 49.2031 70.7916 66.9492 71.8296 71.7604 75.1509

t1 49.2015 47.5557 70.1511 42.9625 63.0951 72.9974 73.6079

t10 51.1690 53.8533 68.0086 47.3814 64.3980 70.6989 73.4272

Tate3 51.9602 40.3044 54.9352 42.4331 42.5136 53.1564 59.7365

Tour 56.7095 54.8627 40.8084 49.5950 43.6533 47.4784 54.8626

Wroclav 44.3532 33.4461 52.2975 32.3816 48.7993 56.5951 58.0914

YW 40.9657 46.2136 68.6462 47.7800 63.9147 72.5969 69.7789

z179 53.2283 46.6198 40.3606 31.0169 46.7720 60.3851 57.4731

zSantas 41.6042 39.1722 39.6670 34.1192 45.8995 47.5281 62.7781

zstack_ghost 56.1666 50.5479 70.2718 58.2366 63.9338 69.5758 71.5528

zStreetDay 42.3889 38.7459 45.1246 44.0013 41.9762 57.2124 71.5070
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The mean scores of each method are drawn in Fig. 10(b). It can be seen that the proposed method
can obtain an ideal performance over the other six methods.

3.4 Selection of λ and α

In WLS filtering, λ controls the smoothness of the output image, and α decides the sensitivity of
gradient change. We randomly select six image sequences for the test to determine the optimal
parameters. According to the default value λ ¼ 1 and α ¼ 1.2 used in Ref. 32, we first fix α ¼ 1

and change λ from 0.1 to 1.0. Then we fix λ ¼ 1 and change α from 0.5 to 1.4. Qmos scores are
calculated under different parameters, respectively, and illustrated in Fig. 11.

We found that the change of λ and α has no significant impact on Qmos score. Although the
Qmos score will increase a little with the decrease of these two parameters, the smaller param-
eters may lead to the deterioration of texture details in some fused images. Therefore, we set
λ ¼ 0.5 and α ¼ 1 to make a good balance.

3.5 Computational Efficiency Comparison

In addition to the evaluation mentioned above, we also test the computational efficiency of differ-
ent methods. All of them are implemented in MATLAB 2018a with a 2.71-GHz CPU (Intel®

Core™ i5-7200U) and 8 GB RAM. Table 4 lists the running time of all methods on the source
images with a size of 1024 × 682 and three exposures in the dynamic scene. The proposed algo-
rithm is implemented without any optimization and ranks in the middle among all comparison
methods. The proposed method is expected to have a higher speed after optimization and C++
implementation.

Fig. 10 Quantitative comparisons of 30 image sequences in the dynamic scenes: (a) Qmos score
and (b) mean score.

Fig. 11 Qmos scores on different parameters: (a) fixing α and changing λ and (b) fixing λ and
changing α.
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4 Conclusion

This paper designs a deghosting MEF method for HDR imaging expansion in the dynamic
scenes. First, we analyze the relationship between the source images and the selected reference
image. IM and structural consistency detection are carried out for over- and under-exposed
images. The ghosts can be reliably removed, and the latent images at different exposures are
obtained. Second, WLS filtering is used to estimate the latent images’ low-frequency compo-
nents, and then the corresponding high-frequency components are extracted. Third, blending
weights are calculated to fuse the low- and high-frequency components to generate the final
fused image with more details. The comprehensive comparative experiment shows that the pro-
posed method can perform better than state-of-the-art MEF algorithms in the dynamic scenes.
It can not only deal with objects with different amplitudes or even large motions but also slightly
camera shake. By comparing the calculation time with other methods, we need to optimize fur-
ther and accelerate the algorithm model to improve its practicability.
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