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Abstract— The principal component analysis (PCA) and 2-D
singular spectral analysis (2DSSA) are widely used for spectral-
and spatial-domain feature extraction in hyperspectral images
(HSIs). However, PCA itself suffers from low efficacy if no spatial
information is combined, while 2DSSA can extract the spatial
information yet has a high computing complexity. As a result,
we propose in this letter a PCA domain 2DSSA approach for
spectral–spatial feature mining in HSI. Specifically, PCA and
its variation, folded PCA (FPCA) are fused with the 2DSSA,
as FPCA can extract both global and local spectral features.
By applying 2DSSA only on a small number of PCA components,
the overall computational cost can be significantly reduced while
preserving the discrimination ability of the features. In addition,
with the effective fusion of spectral and spatial features, our
approach can work well on the uncorrected dataset without
removing the noisy and water absorption bands, even under a
small number of training samples. Experiments on two publicly
available datasets have fully validated the superiority of the
proposed approach, in comparison to several state-of-the-art
methods and deep learning models.

Index Terms— Hyperspectral image (HSI), principal com-
ponent analysis (PCA), singular spectrum analysis (SSA),
spectral–spatial feature mining.

I. INTRODUCTION

W ITH rich spectral and spatial information in a 3-D
hypercube, hyperspectral image (HSI) can well char-

acterize the material and objects based on their physical,
e.g., moisture and temperature, and chemical properties. As a
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result, different HSI processing tasks, including data classifi-
cation [1], change detection [2], and image denoising [3], have
been explored to tackle various challenges in remote sensing.

An HSI is composed of 2-D scenes in hundreds of
contiguous wavelengths, where each pixel has a 1-D spec-
tral profile [4]. Aside from spectral and spatial informa-
tion, HSI data contains redundant content and noise due
to environmental effect, sensor limitations, and atmospheric
impacts. Thus, even sophisticated classifiers, e.g., support
vector machine (SVM) and deep learning (DL), have limited
classification accuracy. Here, the bottleneck is how to derive
the most representative features from the HSI data, i.e., spec-
tral and spatial feature mining especially of the uncorrected
dataset.

Considering the high redundancy in contiguous spectral
bands, spectral feature extraction and dimensionality reduction
have been popularly used in some early studies. Although
principal component analysis (PCA) is most widely used
for unsupervised dimension reduction and spectral feature
extraction, it often fails to extract the useful local spectral
information. To tackle this issue, several variations have been
explored, such as a correlation-based segmented PCA (SPCA)
[5], where the spectral bands are segmented into groups for
group-based PCA followed by feature concatenation. In [6], a
spectrally SPCA was proposed and showed better performance
than PCA and SPCA for mapping of the plant species. Similar
to the SPCA, folded PCA (FPCA) was also developed to
extract both the local and global structures in the spectral
domain [7]. However, the main difference is that FPCA reallo-
cates the spectrum of each pixel into a matrix form, based on
which, a partial covariance matrix can be directly determined
and accumulated for subsequent eigenvalue decomposition and
data projection. In this case, it can be more efficient and
effective than PCA and SPCA. More recently, Uddin et al. [8]
proposed a segmented-FPCA approach, which was superior to
PCA, FPCA, and SPCA. However, due to noise caused intr-
aclass variations and high interclass similarity, those methods
still suffer from lack of robustness and limited discriminability.

Recently, a new technique, named 1-D singular spectrum
analysis (SSA) [9], was developed for more effectively exploit-
ing the spectral features. It can extract the trend from the orig-
inal signal as well as the oscillations and noise components.
By only taking the trend and selected oscillations as features
while abandoning the noisy components, the classification
accuracy can be much improved. In an extended 2-D SSA
(2DSSA) [4], spatial features can be effectively extracted for
significantly improved classification accuracy. However, both
1-D-SSA and 2DSSA need to be applied either to each pixel
or each spectral band of the HSI, and thus, it is very time-
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consuming. To reduce the overall computational complexity
while maintaining the classification accuracy, fast implementa-
tion of 1-D-SSA and 2DSSA was also developed [10], though
the overall reduction of computational cost is still very limited.
Recently, a tensor-SSA [11] was proposed for much improved
classification accuracy.

When applying the DL-based approaches to HSI, some
models prominent in computer vision are adapted for data
classification [12]. Nonconvexity is also applied to DL models
for improved interpretability in complicated real-world situ-
ations. When applying denoising for HSI classification [3],
extraction of spectral and/or spatial features is focused, where
the results can be fairly good in HSI classification. However,
they may suffer from either a very high computational cost
or lack of sufficient training data. This is why classical
machine learning models, such as SVM, are still widely used.
By combining with an effective feature extractor, SVM may
achieve comparable performance as DL models [13].

These challenges motivate us to propose a new framework
of applying the 2DSSA on the PCA domain (PCA + 2DSSA,
FPCA + 2DSSA), resulting in improved classification accu-
racy yet with significantly reduced computational complexity.
By fusion of FPCA and PCA with 2DSSA, we further propose
Fusion + 2DSSA, for more improved data storage efficiency,
classification accuracy, and computation cost. The main con-
tributions are summarized as follows.

1) We proposed a new framework of PCA domain 2DSSA
for spectral–spatial feature extraction in HSI, where the
computation cost can be significantly reduced while
improving the classification accuracy.

2) In the proposed framework, three different schemes,
i.e., PCA + 2DSSA, FPCA + 2DSSA, and Fusion +
2DSSA, are introduced to balance the efficiency and effi-
cacy to satisfy various practical needs, with parameters
adaptively determined for ease of implementation.

3) The superiority of our approach has been validated
in two corrected HSI datasets and two uncorrected
HSI datasets when benchmarked with traditional feature
extraction methods and DL models.

II. PROPOSED APPROACH

Fig. 1 shows the workflow of the proposed method, which is
composed of three main steps, i.e., spectral feature extraction
and dimension reduction in HSI, 2DSSA-based PCA domain
spatial feature extraction, and feature fusion, followed by data
classification using SVM as detailed next.
A. PCA-Based Spectral Feature Mining in HSI

Given an HSI hypercube D ∈ �Dx ×Dy×Dλ , the spec-
tral vector of a given pixel can be denoted as xn =
[xn1, xn2, . . . , xnDλ

]T , where n ∈ [1, N] and N = Dx Dy is
the total number of pixels. The mean-adjusted vector In of xn
will be used to calculate the covariance matrices of PCA

CPCA = 1

N

N∑

n=1

In I T
n . (1)

Let An ∈ �H×W be the converted matrix, where H is the
number of band group and W is the band number in each band
group, and H W = Dλ. The covariance matrices of FPCA can
be obtained by [8]

CFPCA = 1

N

N∑

n=1

AT
n An. (2)

For a covariance matrix, the eigenproblem can be
solved by decomposing C into the multiplication of three
matrices as

C = �D�T (3)

where D is the diagonal matrix composed by the eigenvalues
of C and � denotes the orthonormal matrix composed by
the corresponding eigenvectors [v1, v2, . . . , vDλ

]. To reduce the
dimension of spectral features, top eigenvectors corresponding
to bigger eigenvalues are selected. For PCA, we take the first
qPCA components as the spectral features of xn as follows:

xn(PCA) = �T In ∈ �1×qPCA . (4)

For FPCA, we take the first q̂ components for each band
group, and the spectral features of xn can be derived as

xn(FPCA) = �T An ∈ �H×q̂ (5)

where the total number of components in FPCA will be
qFPCA = H q̂. For convenience, the spectral feature of D can
be represented as D(PCA) ∈ �Dx ×Dy×qPCA and D(FPCA) ∈
�Dx ×Dy×qFPCA .

B. PCA Domain Spatial Feature Extraction With 2DSSA
After spectral feature mining, the original HSI hypercube

D is represented by PCA features D(PCA) ∈ �Dx ×Dy×qPCA

and FPCA features D(FPCA) ∈ �Dx ×Dy×qFPCA . Note that
each of the PCA/FPCA components is actually of the same
size as the original spectral band, i.e., Dx × Dy , to which
the 2DSSA [4] is applied to extract the spectral–spatial
features. First, a squared window L ∈ �Lx ×L y , where
Lx ∈ [1, Dx] and L y ∈ [1, Dy], is used to construct a
trajectory matrix T ∈ �S×K of featured image (embedding
step) where S = Lx × L y and K = (Dx − Lx + 1)
(Dy − L y + 1). Often, we have Lx = L y for simplicity.

For the derived trajectory matrix T , the singular value
decomposition (SVD) is applied to extract the eigenvalues
e1 ≥ e2 ≥ . . . ≥ eS and eigenvectors U ∈ �S×S. As a result,
T is decomposed in T = T1 +T2 + . . .+TS components. After
that, the grouping and diagonal averaging step are applied
to invert the embedding step and obtain the reconstructed
image Z. Accordingly, each featured image in D(PCA) and
D(FPCA) can be represented by

D(·)′ = Z1 + Z2 + · · · + Z M =
M∑

m=1

Zm (6)

where M is the number of selected Eigenvalues in the SVD.
When M = S, the reconstructed image is equal to the
original image. Here, we denote D(PCA + 2DSSA) and
D(FPCA + 2DSSA) as the PCA-based spectral–spatial fea-
tures and FPCA-based spectral–spatial features, respectively.

For consistency, the same configuration of 2DSSA in [4]
is adopted, where L = 10 and only the first eigenvalue
component, M = 1, i.e., the trend, is used. Although varying
parameters may affect the final classification performance for
different datasets, the overall difference is estimated to be less
than 1%. Therefore, the parameters L and M are set to 10
and 1 in all the experiments for simplicity.

C. Feature Fusion

Applying the 2DSSA on the PCA/FPCA domains can
reduce the computation cost compared to band-wise opera-
tions. In addition, as shown in Fig. 2, the discrimination ability
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Fig. 1. Workflow of our proposed PCA domain 2DSSA schemes.

Fig. 2. Obtained spatial scenes from PCA, FPCA, and 2DSSA.

of features extracted from the Indian Pines dataset by PCA
+ 2DSSA, and FPCA + 2DSSA can be enhanced. In PCA,
we choose qPCA = 10. For FPCA, we have H = 10, W = 20,
and qFPCA = 10, i.e., the 200 bands are put into ten groups,
and only one component is utilized from each group.

As shown in Fig. 2, low-order principal components (PCs)
have smoothed the spatial features, while high-order PCs are
quite noisy. Applying the 2DSSA to PCs can make these noisy
components usable again in the derived trend signal. This
has shown the added value of 2DSSA on the PCA domain
as the extracted spatial-domain trend signal can effectively
suppress the noise and enhance the discrimination ability of the
spectral–spatial features. On the other hand, PCA can extract
the global spectral structure using a small number of low-
order PCs, while FPCA can preserve local spectral features.
As seen, PCA and FPCA features are quite supplementary to
each other, which has motivated our fused solution below.

As FPCA components are extracted from locally grouped
spectral bands, they appear to be much smoother than those
from PCA. This actually shows that FPCA is more robust to
spectral noise, and hence, it has the potential to achieve noise-
robust feature extraction and data classification in HSI, espe-
cially from the uncorrected dataset without removing the noisy
and water absorption bands. On the other hand, the features
extracted from FPCA seem to be more redundant, possibly due
to inappropriate grouping of bands. In addition, when applying
2DSSA to FPCA components, the effect of spatial smoothing
is not as strong as those on the PCA components. This actually
indicates potential limitations of FPCA + 2DSSA and, hence,
the need for fusion with PCA + 2DSSA.

For an HSI, the obtained spectral–spatial features D(PCA +
2DSSA) and D(FPCA + 2DSSA) can be separately used for
classification of the HSI. Meanwhile, they can also be fused
to form a combined feature vector, denoted as

D(Fusion + 2DSSA)

= {D(PCA + 2DSSA)D(FPCA + 2DSSA)}
∈ �Dx ×Dy×(qPCA+qFPCA). (7)

The combined feature has a dimension of (qPCA + qFPCA),
which can be much smaller than Dλ, though the spatial
dimension remains the same. Note that qPCA and qFPCA here

are adaptively decided as follows. For FPCA in Fusion +
2DSSA, we divide each spectrum into ten groups and select
the first component of each group to form ten combined
components, i.e., qFPCA = 10. For PCA, qPCA is decided based
on the accumulated variance of the PCA components no less
than a threshold of the total variance, and this threshold is
empirically determined as 99.98% as it can help to produce
particularly good results for all the datasets. Accordingly, the
qPCA values for the Indian Pines and Salinas are adaptively
determined as 90, and 20, respectively. To this end, the total
number of combined features after the feature fusion for
the Indian Pines and Salinas is 100 and 30, respectively.
The detailed experimental results and efficacy analysis of the
PCA + 2DSSA, FPCA + 2DSSA, and Fusion + 2DSSA
schemes are presented in Section III.

III. EXPERIMENTS

A. Data Description

In our experiments, two publicly available HSI datasets are
used for performance evaluation. The first is Indian Pines,
which is collected by the Airborne Visible/Infrared Imaging
Spectrometer (AVIRIS) in 1992 in the USA. This dataset is
labeled in 16 land cover classes and contains 145×145 pixels
in 220 spectral bands. The second is Salinas, also collected
by AVIRIS over the Salinas Valley in CA, USA, and it has
512 × 217 pixels in 224 spectral bands labeled in 16 classes.
After removing 20 noisy and water absorption bands, the
corrected datasets of the two images are produced.

B. Experimental Setup

The optimal numbers of PCs for PCA, FPCA, PCA +
2DSSA, and FPCA + 2DSSA are determined within [10, 100]
at a step of 10 by maximizing the Kappa coefficient (KP) (%).
To validate the efficacy of the extracted features, a standard
SVM classifier [14] is employed for data classification. Conse-
quently, the radical base function (RBF) is used as the kernel
for the SVM, where the cost (c) and the gamma (γ ) are
optimized through a grid search [7]. The overall accuracy
(OA), average accuracy (AA), and KP are used for quantitative
evaluation. Each experiment was repeated ten times, where
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TABLE I

CLASSIFICATION PERFORMANCE FOR INDIAN PINES DATASET WITH FIVE PIXELS PER CLASS FOR TRAINING

TABLE II

CLASSIFICATION PERFORMANCE FOR SALINAS DATASET WITH FIVE PIXELS PER CLASS FOR TRAINING

training and testing samples are randomly selected without
overlap. Average results are taken for statistical significance
analysis and comparison.
C. Experimental Results

The quantitative comparison between our proposed method
and other benchmarking techniques on two HSI datasets is
shown in Tables I and II. ND is the number of feature
dimensions. Time is the running time of each method. The
best results and the second best results are highlighted in
bold and italic shading, respectively. The optimal selection of
the PC number in PCA + 2DSSA, FPCA + 2DSSA, PCA,
and FPCA is decided after massive experiments. As seen,
Fusion + 2DSSA always leads to a higher accuracy, due to
the strong fusion of PCA and FPCA and making full use
of local/global-spectral and spatial information while sup-
pressing data noise. PCA + 2DSSA and FPCA + 2DSSA
consistently produce better results than 2DSSA, and this
is because PCA and FPCA reduce the redundant informa-
tion in the spectral domain making 2DSSA more effective.
In contrast, the absence of spatial information causes PCA,
FPCA, and 1-D-SSA to generate low accuracy in bench-
marking approaches. In addition, PCA and 1-D-SSA produce
worse performance than raw data in Indian Pines and Salinas,
respectively. All these adverse factors reflect the importance
of combining spatial and spectral features for HSI classifi-
cation. Last but not least, applying 2DSSA on PCA domain
makes the computation cost much lower, which reflects on
the running time. It can be seen that the three proposed
schemes can produce faster and better classification results
than 2DSSA. Among our three schemes, FPCA + 2DSSA
has the fastest running speed, Fusion + 2DSSA has the
best classification performance, and PCA + 2DSSA is a bal-
anced solution. Compared with other benchmarking methods
such as correlation coefficient and joint sparse representation
(CCJSR) [15], SuperPCA [16], and joint bilateral filtering and
spectral similarity-based sparse representation (JSRC) [17],
our methods are more effective and efficient.
D. Comparison With DL Methods

To further validate the efficacy of our proposed method,
we also do the comparison against another four DL mod-

TABLE III

OA OF OUR PROPOSED METHODS COMPARED WITH DL METHODS

USING 200 TRAINING SAMPLES PER CLASS

els [18]–[21] using 200 training pixels per class (Table III).
To be more specific, after removing classes with fewer
than 200 pixels, only nine classes are used in the Indian
Pines dataset. The experimental results show that our proposed
frameworks, Fusion + 2DSSA and PCA + 2DSSA, can con-
sistently yield the best and second best OA on both datasets.
In this way, the effectiveness of our approaches is validated.

E. Computational Complexity

The suggested spectral–spatial fusion approach improves
the efficiency of the standard 2DSSA by integrating PCA
and FPCA to minimize dimensionality in the spectral domain.
In this section, we briefly analyze the computational complex-
ity and memory requirement of each implementation stage in
Tables IV and V. As seen the saving factor referring to 2DSSA
in Table IV, applying 2DSSA on PCA domain decreases the
2DSSA band repetition process, which turns to lower computa-
tion burden. Fusion + 2DSSA has slightly higher complexity
than the other two because of the fusion of both PCA and
FPCA. As we only apply on the PCs, this has significantly
reduced the computational cost from conventional. As shown
in Table V (D.M, C.M, and P.M represent the size of input data
matrix, covariance matrix, and projection matrix, respectively),
our proposed three frameworks need slightly more memory
than the 2DSSA and PCA/FPCA alone due to the fusion
of the spectral and spatial processing. However, the overall
memory requirement is modest, which is very close to the size
of the hypercube. For Indian Pines and Salinas datasets, the
memory requirements are only up to about 25 and 102 MB,
respectively, a very small portion of the computer RAM
at 32 G or even more.

This has validated the computational efficiency of
the proposed method. The detailed comparison of
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TABLE IV

COMPUTATIONAL COMPLEXITY IN THE DIFFERENT STAGES AND SAVING FACTORS REFERRING TO 2DSSA

TABLE V

MEMORY REQUIREMENT OF DIFFERENT METHODS IN DIFFERENT STAGES

USING PCA/FPCA AND 2DSSA (L = 10, M = 1, AND 20 PCS)

multiply-accumulates (MACs), running time, and memory
requirements on the two HSI datasets can be found in the
Supplementary Material (Tables S1–S3).

IV. CONCLUSION

In this letter, a novel PCA domain 2DSSA framework is
proposed, where three schemes are introduced for noise-robust
spectral–spatial feature extraction. By applying PCA/FPCA in
the PCA domain, the computational cost of band-wise 2DSSA
can be significantly reduced while preserving the dominant
spectral information for more effective data classification in
HSI. Experiments on two publicly available datasets have fully
validated both the efficiency and efficacy of the proposed
framework. Among our proposed schemes, FPCA + 2DSSA
has the lowest computation cost, yet Fusion + 2DSSA can
produce consistently the best classification accuracy on the
corrected and uncorrected datasets when benchmarked with
several state-of-the-art approaches. Besides, PCA + 2DSSA
has relatively a good balance between the computation cost
and the classification accuracy.

With the advantages of low computational cost, high classi-
fication accuracy, and robustness to noise, the proposed meth-
ods have many potential application scenarios in hyperspectral
remote sensing. As the future work, superpixel segmentation
and band selection will be focused for improved spatial feature
extraction and dimension reduction.
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