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Abstract: For traditional imaging systems, high imaging quality and system miniaturization are often
contradictory. In order to meet the requirements of high imaging quality and system miniaturization,
this paper proposes a method to correct the aberration of coherent imaging optical systems. The
method is based on the idea of phase recovery and the imaging principle of a coherent imaging system
to recover the aberrations at the exit pupil of the system. According to the recovered aberrations,
conjugate filters are constructed to correct the image quality in the frequency domain. The imaging
quality of the system is improved without changing the original optical path, and the simplicity of
the system is guaranteed. To solve the pupil frequency domain aberration more accurately, this paper
adopts the dual competition and parallel recombination strategy based on the genetic algorithm
and introduces the disaster model. The improved genetic algorithm can effectively restrain the
appearance of the “precocity” phenomenon. Finally, the paraxial imaging optical path is simulated
and verified by experiments. The results show that, after aberration correction, the image sharpness
is improved and the edge information is richer, which verifies the feasibility of the coherent imaging
system image quality enhancement method proposed in this paper.

Keywords: image quality; phase recovery; computational imaging; coherent imaging

1. Introduction

In 1972, to solve the imaging problem of electron microscopy, Gerchberg and Saxton et al.
proposed a method to recover the phase of objects through iteration [1], namely, the GS
iterative phase recovery algorithm (GS algorithm). The core idea of the GS algorithm is an
inverse solution, which calculates the phase information that is difficult to obtain through
the intensity information that is easy to obtain. After the research and improvement of
many researchers, such as Misell and Fienup [2–4], this algorithm can extract the phase
information of objects at the pixel level with high recovery accuracy and is not affected
by the shape of objects. Currently, it is widely used in various fields, such as X-ray
crystallography, electron microscopy, wavefront detection, astronomy, and holographic
technology [5–8].

The coherent imaging system is a kind of imaging system that requires high coherence
of the light source. When the coherence of time and space is poor, the clarity and visibility
of the diffraction pattern will be greatly reduced. With the development of the phase
recovery algorithm, more and more researchers focus on improving the image quality of
coherent imaging systems by reconstructing pupil function. In 2021, Yao et al. [9], of the
Zhejiang University, obtained the PSF (point diffusion function) of each sub-aperture of
the system through wavefront coding, then reconstructed pupil function using a phase
recovery algorithm, then obtained system PSF based on reconstructed pupil function,
and then improved the image quality of the system through deconvolution. In 2022,
Wang et al. [10], of the Foshan University, improved the quality of reconstructed images by
optimizing spectral function and pupil function based on a phase recovery strategy.
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In this paper, a method to improve the image quality of coherent imaging optical
systems is proposed based on a phase recovery algorithm. This method combines the phase
recovery algorithm with the imaging principle of the coherent imaging system, eliminates
the surface propagation of the internal optical path, and does not need to obtain the PSF of
the system. The frequency domain conjugate aberration filter is obtained by solving the
pupil frequency domain aberration, thereby constructing the frequency domain aberration
correction model of the coherent imaging system. By improving the imaging quality of the
coherent imaging system, the imaging resolution and accuracy can be improved, the noise
and error of the system can be reduced, and the stability of the system can be improved.

2. Exit Pupil Frequency Domain Aberration Correction Model Based on Frequency
Domain Phase Recovery Algorithm
2.1. Aberration Correction Model in Exit Pupil Frequency Domain

In the process of optical imaging, the optical system can be simplified as a “black box”
with only the entry pupil and exit pupil. Under the condition of a constant halo, as long
as the properties of the exit pupil and entry pupil can be determined at both ends, it is
unnecessary to consider the internal structure. The propagation of light between the entry
pupil and the exit pupil is described by geometric optics, while the diffraction effect of wave
optics is observed before and after the entry pupil. For diffractive-constrained systems, the
propagation of light is equivalent to passing through a low-pass filter due to the aperture
limitation. The image formed by the system is convolved with the geometrically predicted
image and the point-spread function, which can be regarded as the Fraunhofer diffraction
pattern of the exit pupil function [11].

H
(

fx, fy
)
= F

{
A
λz

x
P(x, y)e−i2π( fx x+ fyy)dxdy

}
= (Aλz)P

(
−λz fx,−λz fy

)
= (Aλz)P(−x,−y)

, (1)

where z is exit pupil distance, Aλz is a coefficient, and P(x, y) is pupil function.
As can be seen from Equation (1), the transfer function of the system is equal to a

calibrated pupil function. When the exit pupil is circular, the minus sign of the independent
variable can be omitted.

H
(

fx, fy
)
= P(x, y) =

{
1 inside the pupil
0 outside the pupil

, (2)

Cut-off frequency fcx = fcy = D
/

2λdi, where D is pupil diameter and di is image distance.

Equation (2) is for the system with ideal diffraction limitation. In the actual imaging
process, aberration will inevitably exist, which is equivalent to adding a phase factor to the
pupil function, as shown in Equation (3):

Ha
(

fx, fy
)
= P(x, y)eikw(x,y) =

{
eikw(x,y) inside the pupil

0 outside the pupil
, (3)

If the spectrum of the object is U0
(

fx, fy
)

and the spectrum of the image is Ui
(

fx, fy
)
,

then the imaging process can be expressed as:

Ui
(

fx, fy
)
= U0

(
fx, fy

)
Ha
(

fx, fy
)
= U0

(
fx, fy

)
H
(

fx, fy
)
eikw(x,y), (4)

If the aberration at the exit pupil of the system is known, a conjugate aberration filter
Hac = e−ikw(x,y) can be constructed to correct the aberration at the exit pupil. The correction
process is as follows:

U′i
(

fx, fy
)
= Ui

(
fx, fy

)
Hac = U0

(
fx, fy

)
H
(

fx, fy
)
, (5)
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2.2. Solution of Exit Pupil Aberration Based on Phase Recovery

The premise of constructing the filter is to know the exit pupil frequency domain
aberration distribution. In order to calculate the exit pupil frequency domain aberration
distribution, this paper proposes a method to solve the exit pupil aberration based on a
focal plane and a defocus surface.

As can be seen from Equation (3), pupil function P(x, y) = eikw(x,y) = eiϕ(x,y), where
ϕ(x, y) is the wave aberration at exit pupil. In order to describe this wave aberration
mathematically, this paper adopts the Zernike polynomial to fit the aberration, that is,

ϕ(x, y) =
N
∑

j=1
ajZj, Zj are the Zernike terms, which are used to represent various aberrations

and aj is the Zernike coefficient of the corresponding terms. Since the Zernike polynomial
is an orthogonal polynomial in the unit circle, each Zernike coefficient can be handled
independently in the analysis and correction of aberration and the coefficients will not
affect each another [12].

After fitting the aberration by the Zernike polynomial, the solution of the aberration
distribution at the exit pupil is to find the value of each coefficient of the Zernike polynomial.
Assuming that the amplitude distribution of the Gauss light source is u0(x0, y0), it is
converted to the frequency domain U0

(
fx0 , fy0

)
by Fourier transform. The solution process

of the aberration in the frequency domain of the exit pupil is as follows:

1. Use Zernike polynomials to fit aberrations P(x, y) = exp

(
i

N
∑

j=1
ajZj

)
. According to the

aberration correction model, the transfer function of the system Ha
(

fx, fy
)
= P(x, y) =

exp

(
i

N
∑

j=1
ajZj

)
;

2. According to the imaging principle of optical system, the image frequency spectrum
is equal to the product of the object frequency spectrum and the transfer function
of the system U1

(
fx1 , fy1

)
= U0

(
fx0 , fy0

)
Ha
(

fx, fy
)
. The optical field distribution

at the focal plane can be obtained by the inverse Fourier transform u1(x1, y1) =
F−1{U1

(
fx1 , fy1

)}
= |u1(x1, y1)|eiϕ1(x1,y1). Replace the calculated optical field am-

plitude distribution with the actual measured focal plane complex amplitude distri-
bution A1(x1, y1), forming a new focal plane optical field distribution u′1(x1, y1) =

A1(x1, y1)eiϕ1(x1,y1);
3. The optical field at the focal plane is diffracted to the defocusing plane and the

optical field distribution at the defocusing plane is obtained according to the angular
frequency spectrum diffraction:

u2(x2, y2) = F−1
{
F
[
u′1(x1, y1)

]
exp

[
ikL1

√
1− (λ fx2)

2 −
(
λ fy2

)2
]}

= |u2(x2, y2)|eiϕ2(x2,y2)
;

4. Use the diffraction amplitude |u2(x2, y2)| of the optical field distribution at the de-
focusing plane and the measured amplitude A2(x2, y2) to establish the evaluation
function E = ∑

x2,y2

[|u2(x, y)| − A2(x2, y2)]
2;

5. Use the optimization algorithm to optimize the evaluation function, obtain its min-
imum value, calculate the values of each Zernike coefficient at the minimum value,
return to step (1), and conduct cyclic iteration. When the evaluation function is lower
than the set threshold or reaches the maximum number of cycles, the iteration stops
and the coefficients of each Zernike polynomial are output at this time.

The flowchart of the entire process is shown in Figure 1:
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Figure 1. Flow chart of exit pupil phase recovery.

After the iteration of the above five steps, the value of the Zernike polynomial is
obtained and the aberration distribution in the exit pupil frequency domain of the co-
herent imaging system can be obtained by using this value for aberration fitting. The
whole process requires only moving the detector back and forth to obtain the optical
field distribution I1(x1, y1) and I2(x2, y2) of the two planes. The amplitude distribution is
A1(x1, y1) =

√
I1(x1, y1) and A2(x2, y2) =

√
I2(x2, y2). Figure 2 shows the optical path.
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3. Solving the Aberration in the Exit Pupil Frequency Domain Based on the
Genetic Algorithm

According to the analysis, the evaluation function in this paper is relatively complex,
and the optimization algorithm based on the gradient is poor in solving such functions.
With the development of optimization theory, inspired by the law of natural phenomena
and the sociality of biological groups, many intelligent optimization algorithms have been
developed [13,14]. The genetic algorithm (GA for short) is an optimal solution search
algorithm that simulates the natural evolution process and simulates Darwinian biological
evolution theory of “survival of the fittest” [15,16]. The GA has been widely used since it
was proposed by Professor John H. Holland in 1975. As a practical, efficient, and robust
optimization technique, the genetic algorithm is mainly characterized by direct operation on
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structural objects, no restriction on the derivation and function continuity, inherent implicit
parallelism, and better global optimization ability. In addition, the genetic algorithm adopts
a probabilistic optimization method, which can adjust the search direction adaptively
without definite rules. Based on the significant advantages of the genetic algorithm, this
paper chooses to use genetic algorithm to optimize the evaluation function. And to improve
the process of solution, based on the classical genetic algorithm, dual competition and
parallel recombination strategy are proposed.

The classical genetic algorithm consists of three basic operations: selection, inheritance,
and mutation. It combines individual “heredity and mutation” with nature’s “survival of
the fittest” to find the optimal individual. The specific process is shown in the Figure 3.
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To verify the performance of the genetic algorithm in solving aberration distribution,
the imaging system is simulated in this section. The exit pupil size of the simulated
imaging system is 5 mm and the focal length is 50 mm. Due to the use of angular spectral
diffraction, the receiving surface size of the image square is also set to 5 mm × 5 mm,
and the light source is a monochromatic parallel light source of 632.8 nm. According to
rairy = 1.22λ

f
D , the radius of the Airy spot is known rairy = 7.74 µm. In order to make the

sampling rate of the detector match it, the simulation sampling number is 1024 × 1024, and
the pixel size is 4.88 µm. The wave aberrations in the exit pupil plane were fitted using
defocus (Z1), astigmatism (Z2, Z3) (45◦ and 0/90◦), coma (Z4, Z5) (x and y directions),
and primary spherical aberration (Z6) in Zernike aberration. The normalized Zernike
polynomial expression of the six-term aberration is as follows:

Z1 =
√

3
(
2x2 + 2y2 − 1

)
Z2 =

√
6
(

x2 − y2)
Z3 =

√
6 · 2xy

Z4 =
√

8
[
−2x + 3x

(
x2 + y2)]

Z5 =
√

8
[
−2y + 3y

(
x2 + y2)]

Z6 =
√

5
(
6x4 + 12x2y2 + 6y4 − 6x2 − 6y2 + 1

)
, (6)

Due to the parallel incident light in this paper, there is only on-axis aberration in
principle, but there are also some off-axis aberrations in the paraxial field of view. Therefore,
in the simulation, the aberrations on the defocus and spherical aberrations are larger, and
the other off-axis aberrations are slightly smaller. The values of the six Zernike coefficients
were, respectively, 0.9, 0.2, 0.2, 0.5, 0.5, and 1.0. Exit pupil plane wave aberration fitted
with the above six coefficients ϕ(x, y) = 0.9Z1 + 0.2Z2 + 0.2Z3 + 0.5Z4 + 0.5Z5 + Z6. In
addition, due to the use of a laser monochromatic light source, the amplitude of the light
source is simulated with Gauss amplitude. The fitted phase difference distribution at the
exit pupil and laser amplitude distribution are shown in Figure 4.
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Figure 4. The distribution of exit pupil aberration and light source amplitude are fitted: (a) the fitted
exit pupil aberration; and (b) the amplitude of light source.

After fitting the aberration distribution at the exit pupil and the incident light source,
the optical field can be transmitted according to the method described in Section 2, and the
defocusing distance is 0.2 mm after the focus. Figure 5 shows the optical field distribution
on the focal plane and defocusing plane.
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(b) optical field distribution of defocusing surface.

Substitute system parameters and the optical field data of the two planes into solution
method of exit pupil frequency domain aberration, and the evaluation function of Zernike
polynomial coefficients is obtained. The genetic algorithm was used to find the optimal
solution to the evaluation function. The population size was set to 600, and the population
algebra was set to 600 generations. The recovery of the Zernike coefficient and the change
of evaluation function with population algebra are shown in Table 1 and Figure 6:

Table 1. The recovery of the Zernike coefficient.

Defocus 45
Astigmatic

90
Astigmatic X Coma Y Coma Spherical

Aberration

Initial
value 0.9 0.2 0.2 0.5 0.5 1

Recovery
value 0.7450 0.2421 0.0201 0.5838 0.4162 1.0473
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Figure 6. Graph of changes in evaluation function values as population algebra increases.

It can be seen from Figure 6 that the phenomenon of “precocity” is obvious. In the
evolutionary process of the first few generations, the appearance of precocity individuals
caused a rapid decline in the value of the evaluation function and, later, occupied a
firm dominant position. Precocity is a common problem in the operation of the genetic
algorithm. This phenomenon refers to the emergence of relatively excellent individuals in
the early stage, and the offspring of the individual rapidly occupy an absolute proportion
of the population after evolution. Precocity will lead to a decrease in the diversity of the
population, thus, losing the ability to evolve.

The essence of prematurity is that the individuals in the group are homogenized seri-
ously so that the high-order competition mode cannot be formed. The mutation stage can
produce new individuals through gene mutation, increase the diversity of the population,
have a certain probability of producing better individuals, and, to a certain extent, can in-
hibit the phenomenon of precocity puberty. In this section, multiple mutation probabilities
are used to solve the problem. The solution results and population iteration process are
as follows:

As can be seen from Table 2 and Figure 7, a mutation probability which is too small will
reduce the probability of the emergence of new individuals, reduce species diversity, and
cannot break the monopoly position of precocity individuals, but a mutation probability
which is too large will destroy excellent genes, resulting in blind and meaningless evolution
of the population. Although selecting the right mutation probability can obtain more
excellent individuals to a certain extent, the “precocity” phenomenon is still very serious.

Table 2. The recovery results of the Zernike coefficient were obtained using different probability
of variation.

Defocus 45
Astigmatic

90
Astigmatic X Coma Y Coma Spherical

Aberration
Appraise

Value

Initial value 0.9 0.2 0.2 0.5 0.5 1 ---
0.15 recovery value 0.7450 0.2421 0.0201 0.5838 0.4162 1.0473 405.6673
0.18 recovery value 0.7681 0.0804 0.4365 0.6709 0.3910 0.9571 390.2093
0.20 recovery value 0.9913 0.5460 0.3194 0.6910 0.5221 1.0404 369.0254
0.23 recovery value 0.8624 0.3916 0.1338 0.4747 0.6585 0.9573 383.9376
0.25 recovery value 1.0729 0.5126 0.5986 0.7880 0.6462 1.0733 448.1115
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duced in this paper. When there is no new optimal individual in successive n gener-
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To restrain the “precocity” phenomenon in the optimization process of the genetic
algorithm, some improvements are made in the three stages of the genetic algorithm
selection, heredity, and variation.

(1) In the selection stage, dual competition is carried out based on random competition,
and three copies of the population are made, which are population 1, population 2,
and population 3, respectively. According to the mechanism of random competition,
population 2 and population 3 compete with population 1, respectively, and half
of the results of the two competitions are taken at equal intervals to form a new
population. Dual competition reduces the risk of the loss of excellent genes caused by
the competition between two excellent individuals to a certain extent and gives the
second chance for the survival of the better genes;

(2) The crossover operator has a serious maturation effect on the search process. In
order to restrain the prematurity and ensure the diversity of the population, in the
cross-recombination stage, this paper carried out parallel cross-recombination based
on the two-point crossover, that is, the parents were evenly divided into multiple
groups, and each group exchanged genes in different regions, respectively. Concurrent
recombination can effectively preserve the original genes of the parent while fully
merging genes, which increases the diversity of the population;

(3) Non-uniform variation is adopted in the mutation stage. In order to protect the optimal
individual from the influence of variation, the optimal individual is copied before
the mutation operation. After the mutation is completed, an individual is randomly
erased and the clone of the optimal individual of the previous generation is put into
the new population. In addition, on this basis, the disaster model is introduced in
this paper. When there is no new optimal individual in successive n generations, a
natural disaster is introduced, that is, the mutation probability is slightly increased,
and after m generations, if there is still no optimal individual, the mutation probability
is increased again. From the above work, it can be seen that excessive mutation
probability will hurt the evolution of the population, so the mutation probability
cannot be increased uncontrollably, and an upper limit should be set. When a new
optimal individual appears, the introduction of natural disasters is stopped and the
initial mutation probability is returned.

The improved genetic algorithm was used to optimize the Zernike coefficient, and the
population size was still 600, and the population algebra was 600 generations. The optimal
recovery before the improvement was compared, and the change curve of the recovery of
the Zernike coefficient and the evaluation function along with the population algebra was
shown in Table 3 and Figure 8.
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Table 3. The recovery of the Zernike coefficient.

Defocus 45
Astigmatic

90
Astigmatic

X
Coma

Y
Coma

Spherical
Aberration

Appraise
Value

Initial value 0.9 0.2 0.2 0.5 0.5 1
Initial recovery value 0.9913 0.5460 0.3194 0.6901 0.5221 1.0404 369.0254

Improved recovery value 0.9094 0.1721 0.3807 0.4770 0.4594 1.0048 222.1505
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As can be seen from Table 3, the improved genetic algorithm in this paper has a
stronger optimization ability. It can be seen from Figure 8 that before the improvement
of the algorithm, the “precocity” phenomenon was obvious. In the evolutionary process
of the first few generations, the appearance of precocity individuals caused the value of
the evaluation function to decline rapidly and occupy a dominant position later. After
the improvement of the algorithm, the “precocity” phenomenon is suppressed. When
population evolution stagnates, the introduction of the natural disaster model can accelerate
population evolution to a certain extent.

In order to more intuitively show the recovery of the exit pupil phase by the improved
genetic algorithm, a bar chart of coefficient comparison is drawn according to Table 3, as
shown in Figure 9:
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Figure 9. Bar comparison of Zernike coefficients.

It can be seen from Figure 9 that the genetic algorithm has effectively recovered the
approximate phase, and the recovery of the field of view defocus and first-order spherical
aberration on the axis has been extremely close to the real value. Figure 10 shows the
distribution of recovered exit pupil aberration and the residual distribution between it and
the real one:
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Figure 10. Aberration distribution and residual distribution of the recovered exit pupil: (a) recovered
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It can be seen from Figure 10 that the recovered phase distribution is in good consis-
tency with the initial phase distribution set in Figure 4. It can be seen from the residual
distribution that the residual is only 1% of the aberration. Generally speaking, the phase is
recovered well.

The above work verifies the solving performance of the improved genetic algorithm
with a small Zernike coefficient. When the Zernike coefficient is large, the distribution of
the evaluation function will be more complex. The Zernike coefficients of the six aberrations
were set as 5, 2, 2, 5, 5, and 9, which were solved by using the genetic algorithm before
and after improvement. The population size was 600 and the population algebra was
600 generations. The recovery of Zernike coefficients and the iteration of the population
were shown in Table 4 and Figure 11:

Table 4. The recovery of the Zernike coefficient.

Defocus 45
Astigmatic

90
Astigmatic

X
Coma

Y
Coma

Spherical
Aberration

Appraise
Value

Initial value 5 2 2 5 5 10
Initial recovery value 4.0217 3.6801 2.3041 4.7981 5.1766 9.1937 713.2161

Improved recovery value 4.7557 2.0356 2.0176 5.2580 5.2164 8.8934 686.7341
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As can be seen from Table 4 and Figure 11, the solving ability of the classical genetic
algorithm decreases to a large extent and the “precocity” phenomenon is serious after
the increase of the Zernike coefficient. The improved genetic algorithm in this paper still
maintains a relatively strong solving ability and obtains a high phase accuracy.
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According to the solving principle of aberration in the exit pupil frequency domain in
Section 2, the phase recovery algorithm mainly depends on the mutual iteration between
the focal plane and a subsequent defocusing plane, so the defocusing distance will have a
certain influence on the precision of phase recovery. Here, a simulation study is made on the
influence of defocusing distance on the solving accuracy. In this section, the defocus values
of 0.05 mm, 0.1 mm, 0.2 mm, 0.3 mm, 0.5 mm, and 1.0 mm were, respectively, selected
for simulation using genetic algorithm. The recovery results of each Zernike coefficient
were shown in Table 5. The changes in evaluation function values along with the defocus
distance were shown in Figure 12:

Table 5. Relationship between recovery of Zernike coefficient and defocusing distance.

Defocus 45
Astigmatic

90
Astigmatic

X
Coma

Y
Coma

Spherical
Aberration

Appraise
Value

Initial value 0.9 0.2 0.2 0.5 0.5 1 ---
0.05 mm Recovery value 0.7777 0.1194 0.2244 0.5143 0.5681 1.0278 38.4331
0.1 mm Recovery value 0.8624 0.3685 0.2603 0.5334 0.4949 1.0098 119.5324
0.2 mm Recovery value 0.9040 0.1721 0.3807 0.4770 0.4594 1.0048 222.1505
0.3 mm Recovery value 0.9865 0.3755 0.1611 0.5062 0.5616 0.9826 283.6212
0.5 mm Recovery value 0.8956 0.1892 0.4135 0.6316 0.4280 0.6565 320.1431
1.0 mm Recovery value 0.9040 0.0519 0.1348 0.5441 0.3606 1.0390 338.0757

Sensors 2023, 23, x FOR PEER REVIEW 11 of 21 
 

 

Figure 11. Graph of changes in evaluation function values as population algebra increases: (a) before 
algorithm improvement; and (b) improved algorithm. 

As can be seen from Table 4 and Figure 11, the solving ability of the classical genetic 
algorithm decreases to a large extent and the “precocity” phenomenon is serious after the 
increase of the Zernike coefficient. The improved genetic algorithm in this paper still 
maintains a relatively strong solving ability and obtains a high phase accuracy. 

According to the solving principle of aberration in the exit pupil frequency domain 
in Section 2, the phase recovery algorithm mainly depends on the mutual iteration be-
tween the focal plane and a subsequent defocusing plane, so the defocusing distance will 
have a certain influence on the precision of phase recovery. Here, a simulation study is 
made on the influence of defocusing distance on the solving accuracy. In this section, the 
defocus values of 0.05 mm, 0.1 mm, 0.2 mm, 0.3 mm, 0.5 mm, and 1.0 mm were, respec-
tively, selected for simulation using genetic algorithm. The recovery results of each Zer-
nike coefficient were shown in Table 5. The changes in evaluation function values along 
with the defocus distance were shown in Figure 12: 

Table 5. Relationship between recovery of Zernike coefficient and defocusing distance. 

 Defocus 
45  

Astig-
matic 

90  
Astig-
matic 

X  
Coma 

Y  
Coma 

Spherical 
Aberra-

tion 

Appraise 
Value 

Initial value 0.9 0.2 0.2 0.5 0.5 1 --- 
0.05 mm Recovery value 0.7777 0.1194 0.2244 0.5143 0.5681 1.0278 38.4331 
0.1 mm Recovery value 0.8624 0.3685 0.2603 0.5334 0.4949 1.0098 119.5324 
0.2 mm Recovery value 0.9040 0.1721 0.3807 0.4770 0.4594 1.0048 222.1505 
0.3 mm Recovery value 0.9865 0.3755 0.1611 0.5062 0.5616 0.9826 283.6212 
0.5 mm Recovery value 0.8956 0.1892 0.4135 0.6316 0.4280 0.6565 320.1431 
1.0 mm Recovery value 0.9040 0.0519 0.1348 0.5441 0.3606 1.0390 338.0757 

 
Figure 12. Evaluation function value and defocusing distance relationship graph. 

As can be seen from the figure above, the value of the evaluation function increases 
with the increase of the defocusing distance, indicating that the shorter the defocusing 
distance, the better the evaluation of phase recovery. However, compared with the first 
three groups of data, as shown in Figure 13: 
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As can be seen from the figure above, the value of the evaluation function increases
with the increase of the defocusing distance, indicating that the shorter the defocusing
distance, the better the evaluation of phase recovery. However, compared with the first
three groups of data, as shown in Figure 13:
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As can be seen from the figure above, although the value of the evaluation function
decreases with the decrease of the defocusing distance, the ratio difference between the re-
covered Zernike coefficient and the fitted initial value phase increases somewhat, especially
the two kinds of axial aberrations of defocusing and the first-order spherical aberration.
The recovery of the defocusing of 0.05 mm is not as good as that of 0.1 mm and 0.2 mm.

It can be seen from the above work content that the precision of the phase recovery
algorithm is not a simple linear relationship with the defocusing distance, and the smaller
the defocusing distance is not the better. Too small a defocusing distance will lead to
inaccurate phase information recovery, thus, affecting the imaging quality. The accuracy of
the phase recovery algorithm is affected by a variety of factors, including the intensity of
the light source, imaging depth, etc. When the defocusing distance is less than a certain
value, the recovered phase information will appear as an “aliasing” phenomenon, namely,
the blind area, as the depth information is blurred, resulting in reduced accuracy. Therefore,
when choosing the defocusing distance, various factors such as the intensity of the light
source, imaging depth, and optical path parameters should be comprehensively considered
to find the appropriate defocusing distance.

4. Simulation Verification of the Frequency Domain Aberration Correction Model of a
Coherent Imaging System

In this section, based on the theory in Section 2 and the research content in Section 3,
the paraxial coherent imaging system is used to simulate and verify the feasibility of the
frequency domain aberration correction model proposed in this paper.

According to the above requirements, the exit pupil size of the final built optical
system is 20 mm, the focal length is 250 mm, and the object distance is set to 7.5 m, which is
30 times the focal length. The light source still uses the monochromatic light source of 632.8
nm, and the amplitude distribution of the light source is simulated as Gauss distribution.
Since angular spectral diffraction is used in the transmission process of the optical field,
the size of the image-receiving surface is also set to 20 mm × 20 mm. According to the
calculation, the radius of the Airy spot in the system is 9.65 µm, so the number of pixels on
the receiving surface can be set to 2048 × 2048. The specific optical path diagram is shown
in Figure 14.
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In this section, the classic Cameraman image is used for imaging. Since the pixel
of Cameraman’s image is 512 × 512, it needs to be expanded to 2048 × 2048 pixels. In
the simulation, the distribution of aberration at the exit pupil is still fitted by the Zernike
polynomial, and six aberrations such as defocus (Z1), astigmatism (Z2, Z3) (45◦ and 0/90◦),
aberration (Z4, Z5) (x, y directions), and primary spherical aberration (Z6), are fitted. The
coefficients of the Zernike polynomial are, respectively, 0.9, 0.2, 0.2, 0.5, 0.5, and 1.0. The
fitted phase difference distribution at the exit pupil and amplitude distribution of the light
source are shown in Figure 15:
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A light source is used to irradiate Cameraman’s pictures, and Cameraman’s pictures
are imaged. Figure 16 shows the Gauss image produced by Cameraman and the original
image after the system:
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As can be seen from the above figure, due to the diffraction effect of the coherent imaging
system and the existence of the system aberration, the imaging quality is significantly reduced.

In the process of solving the exit pupil phase, the improved genetic algorithm was
used to optimize the evaluation function. The population size was set to 600, and the
population algebra was 600 generations. According to the conclusions in Section 3, the
defocusing distance of the defocusing plane is 0.1 mm, and the light intensity of the two
planes collected is shown in Figure 17:
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Table 6 shows the coefficients of the Zernike polynomial in frequency domain aberra-
tion of exit pupil recovered according to the above principle:

Table 6. The recovery of the Zernike coefficient.

Defocus 45
Astigmatic

90
Astigmatic

X
Coma

Y
Coma

Spherical
Aberration

Initial value 0.9 0.2 0.2 0.5 0.5 1
Recovery value 0.9920 0.2419 0.3184 0.5750 0.5888 1.0088

In order to directly show the recovery of each aberration, the square comparison
diagram of coefficient distribution is drawn according to the above table, as shown in
Figure 18.
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Figure 19 shows the recovered phase distribution and the residual distribution between
the restored phase and the set exit pupil aberration:
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Figure 19. Aberration distribution and residual distribution of the recovered exit pupil: (a) recovered
exit pupil aberration distribution; and (b) residual distribution.

The phase distribution of the aberration in the frequency domain at the exit pupil of
the system is known as Ha = eiϕ, and the aberration correction filter Hac = e−iϕ of the
system can be obtained by conjugate processing according to the aberration correction
model in this paper. As can be seen from Equations (2)–(5), the filter can be used to directly
correct the aberration of the system image in the frequency domain. Cameraman’s images
before and after aberration correction are shown in Figure 20:
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As can be seen from Figure 20, the image quality of the system has been significantly
improved. Compared with the subject, the image quality of the background part with less
information is significantly improved.

To characterize the image quality more quantitatively, the energy of gradient (EOG)
was used to evaluate the image’s sharpness. EOG takes the square sum of the difference
between the gray values of adjacent pixels in the x direction and the y direction as the
gradient value of each pixel and adds the gradient values of all pixels as the evaluation
value of picture clarity. Its expression is shown as follows:

F = ∑
x

∑
y

{
[I(x + 1, y)− I(x, y)]2 + [I(x, y + 1)− I(x, y)]2

}
, (7)

where I(x, y) is the gray value of the image at the pixel (x, y). The sharpness evaluation
results obtained by using the energy of the gradient are shown in the Table 7:

Table 7. Gauss image energy of gradient before and after correction.

Energy of Gradient Value

Gauss image of the system 3.54519 × 1010

Gauss image after correction 4.05023 × 1010

As can be seen from the above table, after correction, the energy gradient of the image
goes up from 3.54519 × 1010 to 4.05023 × 1010, increasing by 14.25%. In order to show the
clarity of the image more directly, the edge information of the image is extracted. The spatial
filtering method is used to obtain the gray change of each pixel in its neighborhood and
the gradient change inside the image to obtain the edge information of the image [17,18].
In this paper, the first-order Sobel operator is used to extracting image edge information,
which can significantly suppress the influence of noise, as shown in Figure 21:
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The Sobel operator divides into two directions, calculates the gradient components
Gx and Gy in both directions, compresses them to the interval [0, 255], and combines the
gradient to obtain G(x, y). Set the appropriate threshold so that the output is 1 if it is greater
than the threshold and zero if it is less than the threshold. The image generated by the
system and the edge information extraction results after correction are shown in Figure 22.
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Figure 22. Comparison of edge information before and after Gauss image correction: (a) edge
information of the original Gauss image; and (b) edge information of Gauss image after correction.

As can be seen from the above figure, the image corrected by aberration has richer
edge information and sharper edge, and the edge information is improved particularly
significantly at the straight line and smooth curve of the background, which verifies the
feasibility of the image quality improvement method of the coherent imaging system
proposed in this paper.

5. Experimental Verification of the Frequency Domain Aberration Correction Model
for a Coherent Imaging System

The above work verifies the feasibility of the image quality enhancement method of the
coherent imaging system proposed in this paper through simulation studies. In this section,
a specific experimental optical path is built to verify the aberration correction model.

According to the theoretical model in this paper, establish a paraxial imaging system,
and the experimental diagram is shown in Figure 23:
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The actual experimental optical path is shown in Figure 24. Since the experimental
optical path is long, it is shown by the module in the figure.
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Figure 24. Layout of experimental optical path device.

The light source is a 632.8 nm monochromatic light source from the Zygo interferometer.
The focal length of the optical system used is 149.98 mm and the exit pupil size is 32.22 mm.
A panchromatic CCD image sensor with a pixel size of 7.4 µm× 7.4 µm and resolution of
4864× 3232 is placed behind the optical system. In this paper, 2048× 2048 sampling points
are intercepted in the phase recovery algorithm. The collected Gaussian image is shown in
Figure 25:
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In the experiment, it is verified that the time field information is collected by the
CCD sensor, which can only obtain the light intensity information of the optical field, but
not the phase information. Therefore, it is necessary to restore the phase distribution of
the Gaussian image to obtain the complete optical field distribution. In this paper, the
accelerated angular spectral iteration method is used to recover the phase of the Gauss
image [19], and the recovered phase picture is shown in Figure 26:
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After obtaining the phase distribution of the Gaussian image, the exit pupil aberration
should be solved so that the aberration filter can be constructed to correct the Gauss image.
According to the aberration correction model in this paper, the optical intensity distribution
of the focal plane and the defocusing plane should be collected. In this process, optical path
parameters should be strictly consistent with the Gauss image acquisition optical path, and
only the resolution plate should be removed so that the imaging system can directly image
the interferometer optical source. In this paper, the defocusing distance is 0.1 mm, and the
optical intensity distribution of the obtained focal plane and the defocusing plane is shown
in Figure 27.
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Figure 27. Optical field distribution in focal plane and defocusing plane: (a) focal plane intensity
distribution; and (b) optical field distribution at 0.1 mm defocusing plane.

Six primary aberrations, such as defocus (Z1), astigmatism (Z2, Z3) (45 degrees and
0/90 degrees), coma (Z4, Z5) (x and y directions), and primary spherical aberration (Z6),
are still used to solve the aberration in the frequency domain of exit pupil. An improved
genetic algorithm is used to optimize the evaluation function. The distribution of aberration
in the frequency domain of exit pupil recovered is shown in Figure 28.
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The phase distribution of aberration at the exit pupil is known, and the aberration
correction filter for the imaging system can be obtained by conjugate processing it, and,
then, the aberration correction of the Gauss image in the frequency domain is conducted.
The correction results are as Figure 29:
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system; and (b) the corrected image.

The energy of gradient (EOG) is used to evaluate the imaging quality, and the results
are shown in Table 8:

Table 8. Gauss image energy of gradient before and after correction.

Energy of Gradient Value

Gauss image of the system 58,550,562
Gauss image after correction 59,858,468

As can be seen from Table 8, after filtering and correction, the energy gradient func-
tion value of the system is increased from 58,550,562 to 59,858,468, an increase of 2.23%,
which proves that the image sharpness is improved and verifies the feasibility of the
proposed algorithm.

6. Conclusions

This paper presents a method to correct the aberration of a coherent imaging optical
system, which does not need to change the original optical path design and takes into
account the imaging quality and miniaturization requirements of the imaging system.
Firstly, the frequency domain aberration at the exit pupil is solved based on the idea of
phase recovery, and the genetic algorithm is used to optimize the Zernike coefficient, which
greatly improves the solving accuracy through the improvement in this paper. After solving
the aberration distribution in the frequency domain of the exit pupil, a conjugate aberration
filter is constructed to filter the image in the frequency domain. The image generated by
the system is used as the intermediate image to directly output the corrected image. Finally,
the paraxial imaging optical path is simulated and verified by experiments. The aberration
correction method proposed in this paper is used to improve imaging quality. The results
show that the energy gradient function value of the simulated image is increased by 14.25%
after aberration correction, and the experimental results are improved by 2.23%, which
verifies the feasibility of the aberration correction method of the coherent imaging system
proposed in this paper. In the following work, the application of this aberration correction
method in the imaging optical path of the large field of view can be further studied to
expand the application range.
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