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A B S T R A C T   

A six-dimensional force measuring device is proposed applicable to large sources of vibration in spacecraft. 
Firstly, a matrix of sensors is used in the construction to improve the load capacity, mounting dimensions and 
stiffness of the platform. Additionally, D optimization is introduced to improve the measuring accuracy. Then, 
aiming to avoid the disadvantages that occur in traditional decoupling, six-dimensional forces decoupling ex-
pressions are obtained based on the full regression linear decoupling algorithm. The results of the experiment 
indicate that the platform has good performance in terms of load capacity (520 kN) and stiffness (fundamental 
frequency of 2196 Hz), with a dynamic measurement error less than 5% in the range of 0–800 Hz in the impact 
force test and a relative error within 5.5% in the sinusoidal excitation test. Moreover, a linearity of 0.2% is also 
achieved over the full scale range of the measuring platform.   

1. Introduction 

With the continuing advancement of deep space exploration, the 
performance requirements in terms of resolution, stability and accuracy 
for spacecraft with high stability such as large space telescopes keep 
increasing. The Chinese Space Station Telescope (CSST), for example, 
has been demonstrated to be able to calibrate GU wavelengths to an 
accuracy of a few kilometers per second and GV and GI to a few kilo-
meters per second [1]. Moreover, the CSST aims to perform the 
high-spatial-resolution (~0.15′′) imaging of targets that cover a large 
area of the sky (~17,500 deg2) and wide wavelength range [2]. How-
ever, even small vibrations can affect the accuracy of such sophisticated 
equipment and it is therefore necessary to assess the impact of the forces 
generated by the vibration sources on the ground, which means that a 
high precision disturbance force measurement device is required. 
Additionally, the moving parts on the CSST have become larger; for 
example, the control moment gyroscope (CMG) has an output of 500 
N⋅m and its mass is 90 kg, and a group of six control moment gyroscopes 
is typically used in a large space telescope [3]. With the addition of the 
mounting equipment, the measuring device is usually required to bear 
loads greater than one tonne in micro-vibration ground tests [4,5]. 
Additionally, each function module has a diameter of around 2 m. 

According to the above requirements, the measuring platform is 
required to have a good performance in terms of load capacity, 
mounting surface dimension, measurement accuracy, etc. In addition, 
the platform is expected to have a good stiffness (fundamental fre-
quency) as the measurement objects are dynamic disturbance forces. 

It is a fact that deformation based force measurement devices [6–16] 
(using strain gauges, capacitors, or piezometers etc.) do not have good 
performance in terms of load capacity and fundamental frequency in 
dynamic measurements with heavy loads, and some of which are also 
highly susceptible to the effects of temperature. However, piezoelectric 
measuring devices [17–20], which offer higher load capacity and 
greater robustness, can perform well when measuring in dynamics, 
hence the majority of vibration source measuring devices on the ground 
use piezoelectric systems. In previous studies of piezoelectric measuring 
devices, Stewart platforms have been widely used [21], but their loose 
structure reduces the stiffness of the platform [3], which limits the use of 
the device for heavy load measuring. In addition, the Stewart platform 
suffers from the disadvantages of over-constrained instability, difficult 
installation and high machining cost. Other measuring devices use more 
orthogonal distributions. Li [22], for example, described a piezoelectric 
six dimensional force measuring device for heavy loads that used a 
four-point support arrangement with a similar principle to the 
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Kistler-type platform which is commercially available. However, this 
system is mainly used for static measurements of heavy loads and do not 
take into account the effects of structural coupling. Xia [3] proposed an 
eight-point supported (four points on the horizontal surface and four 
points on the vertical surface) dynamic disturbance force measuring 
platform which is still fundamentally a four-point support structure. In 
addition, Li [17,23] designed a five-point support load-sharing sensor. 
The load sharing ring was reasonably designed to effectively improve 
the load capacity of the measuring device, but it is mainly used at the 
end of robotic arms. Besides, Liu [24] designed an eight-point paral-
lel-supported sensor, for which a mathematical model was derived, but 
redundant measurements inevitably introduced systematic errors (also 
occurred in article of Xia [3]) and it is difficult to ensure that the pro-
totype is consistent with the measure principle well. Xia [25] proposed a 
sensor array measurement platform capable of measuring dynamic 
forces with significantly higher load capacity and fundamental fre-
quency, but the platform is only capable of measuring three dimensional 
forces. The measuring platform therefore uses the similar parallel con-
struction. Based on the above, existing measurement systems can hardly 
meet these requirements. 

There are different measuring methods and structural designs for 
different measuring devices, according to the operating environment 
and testing conditions, and often one requirement needs to be met. 
However, high accuracy, good load capability and high stiffness mea-
surement requirements can easily lead to conflicting designs, which are 
reflected in the followings. (1) When using conventional structures, 
increasing the size of the platform will reduce its stiffness and load 
capability. (2) The number of sensors connected in parallel will invari-
ably be increased in order to achieve load sharing. When traditional 
measurement strategies are used, unacceptable errors can be introduced 
due to redundant decoupling. Therefore, this paper presents a measuring 
platform with a matrix of sensors and its novel measuring strategy. The 
basic structure of the platform is described in Section 2, which will 
greatly increase the upper limit of the platform dimension and load 
capacity through the use of sensor matrix and the addition of parallel 
links. Moreover, the relationship between redundant sensors and mea-
surement errors is depicted. Section 3 selects the appropriate sensors for 
the measurement from the redundant sensors based on the D optimi-
zation with generalized inverse method and establishes decoupled ex-
pressions with higher accuracy. Section 4 describes experiments 
conducted for the pre-vibration and the evaluation of the dynamic me-
chanical characteristics of the platform. 

2. Structure design and analysis 

The measuring systems is shown in Fig. 1: a load platform, a base and 
sensors linking the two. In order to meet the measurement requirements, 
high demands are imposed on the platform dimension, load capacity, 
structural rigidity and accuracy of the measuring system. In the principle 
of measurement, these indicators often interact with each other. A novel 

platform is thus designed on the basis of the conventional system in 
terms of structure and measurement strategy. 

2.1. Basic structure 

Fig. 2 illustrates the basic structure and the working principle of the 
measuring platform. The addition of parallel sensors on the bottom and 
four sides of the load platform increases the dimension of the mounting 
surface, the load capacity and the rigidity of the measuring platform. 
Before measuring, the platform is mounted on the isolation platform via 
the base and the vibration source is installed on the load platform. Once 
the vibration source starts to operate, the dynamic forces/moments are 
delivered to the sensors and the disturbance forces/moments of the 
source can be obtained by calculating the output signals. Considering 
the ability to measure six dimensional forces/moments, the prototype in 
this paper has 4 × 4 sensors arranged in parallel on the bottom surface 
of the load platform and 2 sensors arranged vertically on each of the four 
sides of the load platform, where the parameters of the sensors are 
shown in Table 1, No. 1. The number and arrangement of redundant 
sensors are intended to increase the load capacity, the mounting surface 
dimension of the platform and the fundamental frequency of the plat-
form and leave enough options for subsequent D optimization. However, 
the choice of the number and arrangement of sensors is not unique, as 
long as it meets the measurement requirements and is suitable for the 
application. The load capacity of the platform is primarily decided by 
the sensors (the simulation shows that the other components have little 
effect on the load capacity of the platform), which can achieve a 
maximum load of 520 kN (26 kN×16 +26 kN×0.5 ×8 =520 kN, where 
0.5 is the tangential load factor). 

The stiffness design of the platform using finite element analysis 
(FEA) is primarily analyzed as the load resolution and capacity of the 
platform is determined primarily by the sensors. As a test prototype, the 
base and load platform are made of metal sheet with comparatively low 
rigidity in order to leave room for performance improvement, where the 
size of the load platform is 350 × 350 × 15 mm and the material is 
7A09. For FEA models, a 1/8 symmetric modeling approach based on 
MSC Patran was used, as shown in Fig. 3(a). The element type of Hex 8 
which has better computational accuracy was mainly used, and the 
nodes number was 18272, the elements number was 11578. Node 
coupling was used to attach these parts. Simulation results show that the 
platform has a fundamental frequency of 2296.8 Hz and a second order 
frequency of 2313.2 Hz, these frequencies are not in the range of interest 
(8–800 Hz) and cause very little structure coupling. 

The simulation for platform of the same dimension with 2 × 2 sen-
sors was also carried out as shown in Fig. 3(b). The fundamental and 
second order frequencies can be obtained as 636.1 Hz and 677.7 Hz 
respectively. Further, the simulations for two platforms with different 
mass loads were also performed as shown in Fig. 4, including the pro-
posed platform with a load platform material of 40Cr. The comparison 
shows that the fundamental frequency of redundant matrix distributed 

Fig. 1. Measuring system model.  
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platform is increased compared to the platform with 2 × 2 sensors 
regardless of the load mass, which indicates a significant increase in the 
stiffness and loading capacity. Moreover, the new platform has a simpler 
structural design compared to conventional measurement equipment, 
and there are further improvements in performance by designing re-
inforcements for the load platform or changing its material. 

2.2. Decoupled errors in redundant measuring 

The improved stiffness and load capacity of the platform are benefits 
of adding sensors, but redundant sensors used can also have an impact 
on measurement accuracy due to system errors. The relevant theory has 
been investigated in the article [3], as shown in the following equation: 

ςa = 3ςF + ςV (1)  

where ζV, ζF and ζa are the relative error of the measurement output V, 
the error of the calibration force F and the error of the calibration of the 
sensor, respectively. If there are more calibration force vectors than six, 
the relative error of the calibration force matrix is magnified in com-
parison with its equivalent of six. This suggests that the redundant 
calibration causes the amplification of the systematic errors. However, 
there are many random components in the environmental error, so an 
appropriate increase in sensors participating can increase measurement 

Fig. 2. The fundamental structure of the platform.  

Table 1 
Parameters of the sensors.  

No. Model Sensitivity Range Preload Resolution  

1 9134B, 
Kistle 

− 3.8 pC/N 26 kN 15–25 N⋅m —  

2 208C02, 
PCB 

11.241 mV/ 
N 

±2224N- 
pk 

— 0.004 N- 
rms  

Fig. 3. Meshed models and fundamental frequencies of two platforms: (a) redundant sensors distributed platform; (b) platform with 2 × 2 sensors.  

Fig. 4. Fundamental frequencies of two platforms with different mass loads.  
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accuracy when the environmental noise is high. Therefore an evaluation 
of the environmental noise needs to be carried out prior to the test and 
develop a measurement strategy. 

Conventional measurement equipment cannot be optimized due to 
the system packaging, however it is possible to develop different 
measuring strategies for various sources of vibration on platform with 
redundant sensors. A method for choosing the suitable set of sensors is 
proposed to improve measurement accuracy while ensuring that the 
platform has the required structural characteristics in terms of mounting 
size, load capacity and stiffness. 

3. Decoupling and its improvements 

The sensitivity of the sensors in the platform cannot be accurately 
predicted, as environmental noise, vibration source characteristics, 
system processing and installation errors are all uncertainties in the 
measurement. When the loading tool was mounted at different locations 
on the platform and forces were input at its different positions, the re-
sponses of 24 sensors fitted by quadratic polynomials can be obtained as 
shown in Figs. 5–7. The figures include the time domain maximum 
values and the root mean square (RMS) in the frequency domain, which 
reflect transient response characteristics and the broadband response 
characteristics respectively, and these data have been normalized. 

Fig. 5 contains the results when the load was input vertically at the 
centre of the platform. Theoretically, the response of these 16 sensors at 
the bottom (1− 16) should be the same, however, the responses of these 
sensors are not consistent in practice due to the uncertainties mentioned 
above which is inevitable in actual tests. Fig. 6 shows the results with 
vertical input loads at the edge of the platform. It can be noticed that the 
response of sensors (1− 16) far from the input is very weak, even 
approaching the ambient noise, a large measurement error will be 
generated if these sensors are used for decoupling. Fig. 7 illustrates the 
results with the horizontal input load. Sensors 17,18,21 and 22 have 
different statistics (which should be consistent) in Fig. 7(b) due to the 
above uncertainties. 

Therefore the different vibration sources need to be assessed ac-
cording the results of pre-vibration to construct different strategies for 
higher accuracy measurements. The problem can be categorized as fol-
lows: what is the number of sensors selected, which sensors to choose, 
and how to decouple. 

3.1. Ambient noise assessment 

First, an assessment of the ambient noise is required to decide how 
many sensors to select. A coherence function as shown in Eq. (2) is used 
to quantify the ambient noise. 

γ2 =

⃒
⃒Gfx(ω)

⃒
⃒2

Gff (ω)Gxx(ω)
(2)  

where Gfx(ω) is the mutual spectrum between the input and output 

signals, Gxx(ω) and Gff(ω) are the self spectrum of the input signal and 
output signal respectively. The coherence function value satisfies the 
conditions of Eq. (3). 

0 ≤ γ2 ≤ 1 (3) 

When γ2 = 1, it indicates that the signal is perfectly unaffected by the 
noise; when γ2 = 0, it means that the signal is entirely drowned by the 
noise. In general, it is considered that the interference of environmental 
noise is small when γ2 > 0.8, and the number of sensors m is chosen to be 
6 as far as possible in order to introduce less systematic error. When γ2 

< 0.8, it is considered that the effect of environmental noise on the 
signals cannot be ignored and redundantly engaged sensors should be 
selected to reduce random errors. 

3.2. Dynamic force decoupling 

After that, the decoupling of dynamic forces is presented. The 
designed measuring platform is mainly used to measure the dynamic 
disturbance forces, and its calculation principle is thus based on spec-
trum analysis, as the time domain signal contains little dynamic 
information. 

Assume that Ui(tk) and F(tk) are the output signals and the input 
signals in the time domain, where i denotes the ith sensor channel. The 
corresponding frequency domain signals Ui(ω) and F(ω) can be obtained 
from Eq. (4) which is a discrete Fourier transform equation, where x(tk) 
is the signal in the time domain and X(ωn) is the signal in the frequency 
domain. 

X(ωn) = DFT

{

x(tk)

}

=
∑N− 1

k=0
x(tk)e− j2πkn/N (4) 

Decoupling of six dimensional forces can be then performed by 
arbitrarily selecting the output signals of m sensors. The generalized 
inverse based decoupling algorithm is chosen for the selection of the 
optimal combination of output channels, taking into account the savings 
of computer resources and the advantages of Matlab in the resolution of 
matric. 

The F(ω)= [Fx(ω) Fy(ω) Fz(ω) Mx(ω) My(ω) Mz(ω)]T indicates the 
input dynamic disturbance forces, U(ω)= [U1(ω) U2(ω) … Um(ω)]T is the 
voltage output signals from m sensors, then the relationship between the 
input and output can be expressed as Eq. (5). 

⎡

⎢
⎢
⎢
⎢
⎣

U1(ω)
U2(ω)
U3(ω)

⋮
Um(ω)

⎤

⎥
⎥
⎥
⎥
⎦
=

⎡

⎢
⎢
⎢
⎢
⎣

V11(ω) ⋯ V61(ω)
V12(ω) ⋯ V62(ω)
V13(ω) ⋯ V63(ω)

⋮ ⋱ ⋮
V1m(ω) ⋯ V6m(ω)

⎤

⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

Fx(ω)
Fy(ω)
Fz(ω)
Mx(ω)
My(ω)
Mz(ω)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

+B(ω) (5)  

where B(ω) is the error matrix, and the Eq. (6) can be obtained from Eq. 
(5). 

Fig. 5. Response of the sensors when subjected to Fz: (a) maximum value in the time domain; (b) RMS in the frequency domain.  
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U(ω) = V(ω)F(ω)+B(ω) (6) 

In order to make indicator J = B(ω)TB(ω) minimal, V(ω) can be 
accessed by the generalized inverse of the matrix as shown in Eq. (7). 

V(ω) = U(ω)F(ω)T( F(ω)F(ω)T)− 1 (7) 

By substituting the above equation into Eq. (6), the least squares 
estimate of F(ω) is calculated: 

F′

(ω) =
(
V(ω)TV(ω)

)− 1V(ω)TU(ω) (8) 

The accuracy of the estimated input disturbance force F’(ω) depends 
on the selection of m output voltages from 24 output channels. 

3.3. 3.3 Optimization algorithm 

Which m of the 24 sensors will be selected as the optimal sensor set 
for the above calculation is discussed below. Ucs(ω) denotes the 24 
measured output voltages from 24 sensors which is called the candidate 
set, and m output voltages are selected from the candidate set to form U 
(ω). We use D optimization [26–28] to select the optimal U(ω). 

Assuming that the measurement errors are independent statistically 
with a standard deviation of σ, var[F’(ω)] = σ2[VT(ω)V(ω)]− 1, where σ2 

is a constant and [VT(ω)V(ω)]− 1 is the sensitivity of F́ (ω); lower sensi-
tivity corresponds to higher accuracy of F́ (ω) [26]. Therefore, choosing 
the m output voltages that maximize the value of |VT(ω)V(ω)| gives the 
most accurate F́ (ω), which is called D optimal design, where D refers to 
the determinant, and the optimal output voltage U(ω) can be obtained 
using the sequential exchange method [29]. 

The m sensors (U(ω)) are selected from the 24 sensors (Ucs(ω)) 
randomly, but ensuring that U(ω) selected can be used to fully decouple 
the six dimensional forces/moments. V(ω) is initialized by substituting 
the output data into Eq. (7). Then select a sensor from the remaining 
sensors and remove the one sensor from the m+ 1 sensors, ensuring that 
m sensors after deletion make [VT(ω)V(ω)] maximum. The selection and 
deletion of sensors does not stop until the value of [VT(ω)V(ω)] is not 

further improved. The final U(ω) is the optimal result Uopt(ω), the 
optimal combination of sensors can also be obtained. 

The process of D optimization is shown in Fig. 8. 

3.4. Improved decoupling 

Despite the advantages of the generalized inverse based decoupling 
method in terms of computer processing speed, this method does not 
consider the case when the matrix of voltage is zero and is prone to ill- 
conditioning matrices when the calibration errors are large, which can 
easily reduce the accuracy of the measurement. Therefore, the decou-
pling method in the previous subsection can be used to find the optimal 
set of sensors, but the corresponding output signals require more accu-
rate six dimensional force decoupling operations. The full regression 
linear decoupling algorithm is introduced. 

The decoupling of force Fz(ω) is first analyzed. Let U1k(ω), U2k(ω),…, 
Unk(ω) (n = 1, 2,…, m; k = 1, 2,…, h) be optimal sensors output data, 
where Unk(ω) indicates the nth optimal sensor output at the kth force 
input point. Of course, the measured inputs also have h sets. The relation 
between Fz(ω) and the Un(ω) is shown in Eq. (9) as a polynomial 
formulation using the regression method. 

Fz(ω) = β0(ω)+ β1(ω)U1(ω)+ β2(ω)U2(ω)+⋯+ βm(ω)Um(ω)+ ε(ω)
(9)  

where ε(ω) is the residual error and βi(ω) (i = 0,1,2, …,m) are the 
regression coefficients. Calculating the h sets of data gives the regression 
coefficients from the pre-vibration test. Eq. (10) can be obtained when 
the test data are substituted into Eq. (9). 

Fzk(ω) = β0(ω)+ β1(ω)U1k(ω)+ β2(ω)U2k(ω)+⋯+ βm(ω)Umk(ω)+ εk(ω)
(10) 

Let the the εk(ω) be ek(ω) and βi(ω) be bi(ω). Eq. (10) can be refor-
mulated as Eq. (11). 

Fig. 6. Response of the sensors when subjected to Mx, My and Fz: (a) maximum value; (b) RMS.  

Fig. 7. Response of the sensors when subjected to Fx, My and Mz: (a) maximum value; (b) RMS.  
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Fzk(ω) = b0(ω)+ b1(ω)U1k(ω)+ b2(ω)U2k(ω)+⋯+ bm(ω)Umk(ω)+ ek(ω)
(11) 

If ek(ω) is ignored, then the estimate of Fzk(ω) is F̂zk(ω), whose 
expression is shown in Eq. (12). 

F̂ zk(ω) = b0(ω)+ b1(ω)U1k(ω)+ b2(ω)U2k(ω)+⋯+ bm(ω)Umk(ω) (12) 

The ek(ω) can be obtained by combining the Eq. (11) and Eq. (12): 

ek(ω) = Fzk(ω) − F̂zk(ω)
= Fzk(ω) − (b0(ω) + b1(ω)U1k(ω) + b2(ω)U2k(ω) + ⋯ + bm(ω)Umk(ω))

(13) 

By minimizing the sum of squares of residuals ek(ω), bi(ω) can be 
calculated: 

Q =
∑h

k=1
ek

2(ω) =
∑h

k=1
[Fzk(ω) − F̂zk(ω)]2 (14) 

In order to minimize Q, Eq. (15) can be obtained from the extreme 
value principle. 

∂Q
∂bn(ω)

= 0
(

n = 1, 2,…,m
)

(15) 

Expanding the above equation gives Eq. (16): 

∑h

k=1
[Fzk(ω) − (b0(ω)+ b1(ω)U1k(ω)+ b2(ω)U2k(ω)+⋯+ bm(ω)Umk(ω))]

= 0
(16) 

The data from each test are averaged as shown in Eq. (17) and Eq. 
(18). 

Un(ω) =
1
h
∑h

k=1
Unk(ω)

(

n = 1, 2,…,m

)

(17)  

Fz(ω) =
1
h
∑h

k=1
Fzk(ω) (18) 

Substituting Eqs. (17) and (18) to Eq.(14) yields b0:: 

b0(ω) = Fz −
∑m

n=1
bn(ω)Un(ω) (19) 

Writing the variables Unk(ω) and Fzk(ω) in the form of deviations 
from the mean of the measured data makes it easier to calculate Eq. (19): 

U′

nk = Unk(ω) − Un(ω) (20)  

F′

zk = Fzk(ω) − Fz(ω) (21) 

Eqs. (20) and (21) are then substituted into Eqs. (12) - (14) to obtain 
Eqs. (22) - (24). 

F̂ zk(ω) = Fz +
[
b1(ω)U

′

1k(ω)+ b2(ω)U
′

2k(ω)+⋯+ bm(ω)U
′

mk(ω)
]

(22)  

ek(ω) = Fzk(ω) − F̂zk(ω)
= F′

zk −
[
b1(ω)U

′

1k(ω) + b2(ω)U
′

2k(ω) + ⋯ + bm(ω)U
′

mk(ω)
] (23)  

Q =
∑h

k=1
ek

2(ω) (24) 

Eq. (15) can be written as Eq. (25): 

−
∂Q

2∂b1
=
∑h

k=1

[
F′

zk(ω) −
(
b1(ω)U

′

1k(ω) + ⋯ + bm(ω)U
′

mk(ω)
)]

U′

1k(ω) = 0

−
∂Q

2∂b2
=
∑h

k=1

[
F′

zk(ω) −
(
b1(ω)U

′

1k(ω) + ⋯ + bm(ω)U
′

mk(ω)
)]

U′

2k(ω) = 0

⋮

−
∂Q

2∂bm
=
∑h

k=1

[
F′

zk(ω) −
(
b1(ω)U

′

1k(ω) + ⋯ + bm(ω)U
′

mk(ω)
)]

U′

mk(ω) = 0

(25) 

Eq. (25) is rewritten as Eq. (26) in matrix form: 
⎡

⎢
⎢
⎣

b1(ω)
b2(ω)

⋮
bm(ω)

⎤

⎥
⎥
⎦

T⎡

⎢
⎢
⎣

S11(ω) S21(ω) ⋯ Sm1(ω)
S12(ω) S22(ω) ⋯ Sm2(ω)

⋮ ⋮ ⋱ ⋮
S1m(ω) S2m(ω) ⋯ Smm(ω)

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

S1y(ω)
S2y(ω)

⋮
Smy(ω)

⎤

⎥
⎥
⎦

T

(26)  

where Sij(ω) =
∑h

k=1U′

ik(ω)U
′

jk(ω), Siy(ω) =
∑h

k=1F′

zk(ω)U
′

ik(ω). 
From the calculation above, the regression expression of Eq. (12) is 

derived. In the same way, force regression equations in other directions 
can be obtained. With the previous analysis, the sensors used for the 
measurements can be obtained and the six-dimensional forces can be 
decoupled. 

Fig. 8. The process of D optimization.  
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4. Experiment 

On the basis of the design and analysis mentioned above, a prototype 
of the measuring platform was manufactured. After the verification of 
the linearity and the rigidity of the platform, pre-vibration experiments 
were conducted to select the optimal combination of sensors. Then the 
dynamic mechanical characteristics of the platform were investigated, 
verifying the validity of the above theory. 

4.1. Testing for the performance of platform 

Fig. 9 shows the test system comprising calibration equipment 
(homemade, the parameters of the force sensors used in the equipment 
are shown in Table 1, No. 2), loading tool, a data acquisition device 
(VRAI820–24 bit, M+P, Germany; precision: ± 0.1 dB), charge ampli-
fier (CT5853, gain: 0.01–1000, precision: 1%) and PC. 

Good linearity is the foundation of a dynamic measuring platform 
and this was verified preliminarily by the measurements of the fre-
quency response function (FRF) curves for sensors. The calibration 
equipment was used to input three forces of different magnitudes under 
the same incentive mode to the loading tool, where the FRF curves of 
sensors 4 is shown in Fig. 10. The fundamental frequency of the 
redundant matrix distributed platform can be obtained as 2196 Hz with 
a acquisition frequency of 8192 Hz and a acquisition time of 16 s (the 
sample coefficient is 2.56, and the bandwidth is 1/16–3200 Hz). This is 
very similar to the simulation result of 2296.8 Hz, which illustrates the 
simple structural design of this platform and the simulation results can 
provide good guidance for the design. Furthermore, it is easy to improve 
the stiffness of the platform by strengthening the load platform and the 

base as mentioned previously. 
Using an input force of 334.1 N as a reference, the relative errors of 

input pulses of 100.3 and 408.7 N for sensor 4 are presented in Table 2, 
showing an average relative error within 4% (dynamic linearity within 
0.2%FS). This approach is intended to describe the linearity of indi-
vidual output in a wide-band and does not fully reflect the linearity of 
the six-dimensional forces of the novel platform after the calibration. 

4.2. Pre-vibration experiment 

Positions 1–6 of the load platform was installed with the loading tool 
as shown in Fig. 11(c). There are 21 points of loading on the loading tool 
and impact forces can be input to the loading tool as shown in Fig. 11 (a) 
using the calibration equipment. 

This experiment chose points 1, 9, 10, 13, 16 and 19 and three 
broadband force impacts were applied to each point. In order to reduce 
the effect of random errors, the three measurements of the signals from 
the sensors of the calibration equipment and the 24 output sensors were 
averaged as input data and measured data. The data of input and output 
can be obtained with a acquisition frequency of 2048 Hz and a acqui-
sition time of 16 s 

Substituting the data obtained into Eq.(2) revealed that the envi-
ronment interferes slightly with the signals, therefore the number of 
sensors was chosen to be 6. 

The data in the frequency domain was obtained by substituting the 
six sets of experimental time domain data into Eq. (4). Note that the 
input forces here need to be converted to the forces/moments operating 
at the center of the loading platform O using Eq. (27).  

Fig. 9. Test system.  

F(ω) = C

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

Fin − 1(ω) 0 0 0 0 0
0 Fin − 9(ω) 0 0 0 0
0 0 Fin − 10(ω) 0 0 0
0 0 0 Fin − 13(ω) 0 0
0 0 0 0 Fin − 16(ω) 0
0 0 0 0 0 Fin − 19(ω)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(27)   
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where C is given by Eq. (28) which can be obtained from Fig. 11, and Fin-i 
is the input force acting at point i. 

C =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 − 1 0 1
0 0 − 1 0 1 0
− 1 − 1 0 0 0 0

− 0.15 − 0.05 0.075 0 − 0.075 0
− 0.15 − 0.05 0 − 0.075 0 0.075

0 0 0.15 0.15 − 0.05 − 0.05

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(28) 

Rewriting Eq. (5) gives Eq. (29): 

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

U11(ω) U19(ω) U110(ω) U113(ω) U116(ω) U119(ω)

U21(ω) ⋱ ⋮

U31(ω) ⋱ ⋮

U41(ω) ⋱ ⋮

U51(ω) ⋱ ⋮

U61(ω) ⋯ ⋯ ⋯ ⋯ U619(ω)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

V11(ω) V12(ω) V13(ω) V14(ω) V15(ω) V16(ω)

V12(ω) ⋱ ⋮

V13(ω) ⋱ ⋮

V14(ω) ⋱ ⋮

V15(ω) ⋱ ⋮

V61(ω) ⋯ ⋯ ⋯ ⋯ V66(ω)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

F(ω) + B(ω)

(29)  

where Ui1(ω), Ui9(ω), Ui10(ω) Ui13(ω), Ui16(ω), Ui19(ω) (i = 1,2,…,6) 
denote the outputs of six sensors selected arbitrarily. 

Deriving Eq. (29), the calibration matrix V(ω) is obtained for an 

Fig. 10. FRF curves of the platform.  

Table 2 
Relative error of the transfer function for different amplitude impulses.  

Frequency range (Hz) Relative error (%) 

100.3 N 408.7 N 

1–800  3.4  2.9 
800–1600  2.8  3.7 
1600–2400  3.2  3.1 
2400–3200  5.7  4.8  

Fig. 11. Input points on the loading tool: (a) schematic of the loading tool and its input points; (b) platform with tool.  

Fig. 12. Comparison of input impact forces with measured forces using 6 
sensors and D optimization:(a) Fy; (b) Mz. 
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arbitrary selection of six sensors, these six sensors were used as the 
initial combination of sensors and D optimization was performed. The 
optimal combination of six sensors can be obtained with the D optimi-
zation. And sensors 1, 5, 6, 17, 21 and 24 were selected as the optimal 
sensors. Subsequently, the output signals of these 6 sensors were linearly 
decoupled using a full regression based method to obtain the more ac-
curate decoupling expressions. 

4.3. Dynamic precision test 

Initially, based on the optimal sensor combination and decoupling 
expressions obtained from the above pre-vibration experiments, impact 
forces were applied to point 11 of the loading tool and the impact forces 
were measured to verify the dynamic accuracy of the platform. The 
energy of a impulse signal can cover a wide frequency bandwidth, so the 
impact forces are suitable for verifying accuracy over the entire band-
width of interest. 

Fig. 12 shows comparisons of the input impact forces and the 
measured forces using 6 sensors and D optimization, where (a) is the 
comparison for Fy and (b) is the comparison for Mz. 

From Eq. (30), the dynamic errors in the measurement of the forces 
can be obtained as shown in Table 3. 

ξi
(
ωj
)
=

⃒
⃒Fobi

(
ωj
)⃒
⃒ −
⃒
⃒Fi
(
ωj
)⃒
⃒

⃒
⃒Fi
(
ωj
)⃒
⃒

× 100%,

(

i = 1, 2; j = 1, 2⋯nfft

)

(30)  

where i represents the two impact forces, and j indicates different fre-
quencies. The dynamic relative errors are within 5% in the range of 
8–800. 

Compared to the measurement curve of a conventional measurement 
platform [3] as shown in Fig. 13(a), the proposed platform has a higher 
measurement accuracy and does not suffer from distortion of the cali-
bration matrix as the frequency increases (as shown in the green box) 
due to its significantly higher stiffness compared to systems of the same 
size. In addition, measurements with and without D optimization are 
compared. It can be found in Fig. 13(b) that D optimization selects the 
sensors with higher signal quality and less interference from the envi-
ronmental noisy which improves the accuracy of the measurement. If 
the measurement environment is significantly noisy, the effect of D 
optimization will be even more pronounced. This is exactly the advan-
tage of the platform with redundant sensors, which is absent in con-
ventional systems. It has also been verified by comparing the green and 
red curves in Fig. 13(b) that redundant sensors can cause greater errors 
when the ambient noise is low. 

Finally, as a practical application, multi-frequency sinusoidal exci-
tation generated by a six dimensional simulator (relative error: within 
3.33%) [30] was measured to further test the accuracy of the platform. 
The test system with simulator is shown in Fig. 14, where the simulator 
was installed on the load platform and the target disturbance output of 
the simulator was controlled by closed loop. This simulator was fitted 
with a load allowing the simulator to provide higher accuracy in low 
frequency vibration. Similarly, to ensure the accuracy of the measure-
ments, the pre-vibration experiments were re-implemented, the optimal 

combination of sensors were re-found and the decoupling expressions 
were re-obtained before the measurement. 

In the Fig. 15, the disturbance forces of the cryocooler (80 Hz, 
160 Hz, 240 Hz) and CMG (46.7 Hz, 116.7 Hz, 233 Hz) were simulated. 
Besides, the 8 Hz is used to test the low frequency characteristics of the 
platform, and the frequencies corresponding to the peaks in all four 
graphs are the same as the seven frequencies above. The data in the  
Table 4 show that the dynamic measurement accuracy of the platform is 
within 5.5%, except for the poor measurement accuracy at 8 Hz, which 
is caused by the inferior low frequency dynamic performance of the 
piezo material. 

5. Conclusions 

This paper presents the design, analysis and test of a redundant 
matrix sensors based dynamic force measuring platform for large 
equipment in spacecraft. The platform adopts the matrix of sensors to 
improve the load capacity, mounting surface dimension and stiffness of 
the novel platform. Additionally, D optimization is introduced to select 
the optimal sensors and the full regression linear decoupling algorithm 
avoids the disadvantages of traditional decoupling methods which 

Table 3 
Dynamic errors in the range of 8–800 Hz.  

Range (Hz) Dynamic errors (%) 

Fy Mz 

1–100  4.31  2.86 
100–200  2.77  1.37 
200–300  1.84  2.01 
300–400  0.78  1.34 
500–600  1.35  0.89 
500–700  1.54  1.54 
700–800  0.99  1.78  

Fig. 13. Measurement curves from conventional system [3] and novel plat-
form: (a) low stiffness of the traditional system [3]; (b) measured results with 
and without D optimization. 

Fig. 14. Test system with simulator.  
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improves measurement accuracy. 
Simulation and experiment indicate that the platform ensures a high 

stiffness and load capacity, where the platform has a fundamental fre-
quency of 2196 Hz, a load capacity of 520 kN and a linearity of better 
than 0.2%FS. And the dynamic relative error of the six dimensional 
generalized forces/moments in force impact tests can be within 5% in 
the range of 8–800 Hz and within 5.5% in sinusoidal excitation exper-
iments, verifying the applicability of the measuring platform in the 
ground testing of dynamic forces from vibration sources. 
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