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A B S T R A C T   

A novel quadrupedal dynamic disturbance force measurement platform is described for the 
measurement of the disturbance forces of low-frequency sources in large optical facilities on the 
ground. The support of four strain monopodia makes the measuring platform more rigid. The 
optimal structural parameters of the strain monopodia are obtained adopting response surface 
methodology, which allows the sensitivity and stiffness of the platform to be balanced. D opti
mization is adopted to obtain a more accurate calibration matrix from the redundant outputs and 
thus improve the measurement accuracy of the platform. Model simulation results show that the 
load capacity of the measurement platform is more than 1000 kg. Using the results of theoretical 
analysis, a prototype system was fabricated and tested. The experimental results show that the 
fundamental frequency of the platform is 749.5 Hz, the dynamic relative error is less than 5.6 % 
in the frequency range of 3–300 Hz, and the static relative error is less than 5 %. The linearity of 
the generalized force is within 1.5 %FS, and the repeatability is within 1.1 %FS.   

1. Introduction 

Performance requirements for the resolution, stability and pointing accuracy of highly stable spacecraft such as large space tele
scopes have increased as the exploration of deep space continues to advance. In the case of the Chinese Space Station Telescope, a 
spectroscopic survey is capable of delivering stellar radial velocities to a precision of 2–4 km s− 1 for AFGKM types of stars (according to 
the Harvard classification, and M− type stars are lower temperature stars) at a signal-to-noise ratio of 100 [1] and the aim is to perform 
the high-spatial-resolution (~0.15′′) imaging of targets that cover a large area of the sky (~17,500 deg2) and wide wavelength range 
[2]. However, even small vibrations can affect the accuracy of such sophisticated devices. In light of this concern, it is necessary to 
evaluate the effects of forces generated by vibration sources on the ground. In addition, the spacecraft carries low-frequency vibration 
sources, such as shutters and swing mirrors. Simulation has revealed that vibrations below 20 Hz generate greater force, and there is 
thus a need for good low-frequency measurement performance of the equipment used in the measurement of disturbance forces [3]. 
Moreover, the moving parts on spacecraft have become larger; e.g., the mass of a control moment gyroscope onboard the Chinese 
Space Station Telescope is 90 kg, and six control moment gyroscopes are usually used in a group for large space telescopes [4]. After the 
installation equipment is added, the measurement device will generally need to support loads greater than 1 ton in a micro-vibration 
ground test [5]. Additionally, with a diameter of nearly 2 m per functional module, a larger mounting plane is required for fixing and 
measuring. Given the above, there is a need for a force measurement platform having greater size and load capacity and, in particular, 

* Corresponding authors. 
E-mail addresses: xiamingyi@ciomp.ac.cn (M. Xia), xuzhenbang@ciomp.ac.cn (Z. Xu).  

Contents lists available at ScienceDirect 

Mechanical Systems and Signal Processing 

journal homepage: www.elsevier.com/locate/ymssp 

https://doi.org/10.1016/j.ymssp.2022.110032 
Received 4 April 2022; Received in revised form 30 June 2022; Accepted 10 December 2022   

mailto:xiamingyi@ciomp.ac.cn
mailto:xuzhenbang@ciomp.ac.cn
www.sciencedirect.com/science/journal/08883270
https://www.elsevier.com/locate/ymssp
https://doi.org/10.1016/j.ymssp.2022.110032
https://doi.org/10.1016/j.ymssp.2022.110032
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ymssp.2022.110032&domain=pdf
https://doi.org/10.1016/j.ymssp.2022.110032


Mechanical Systems and Signal Processing 188 (2023) 110032

2

having better performance in low-frequency measurements. Existing measurement systems hardly meet these requirements. 
There are basically-two types of common force measuring devices in terms of the sensing elements: piezoelectric-ceramic-based 

measurement devices [4,6–11] and strain-gauge-based measurement devices [12–27]. Although piezoelectric sensors respond 
quickly, bear heavy loads and perform well in making dynamic measurements [4,6,9], their poor static and low-frequency dynamic 
measurement performance [11] make them inadequate for the above tasks. Strain-gauge-based sensors have good properties that are 
lacking for piezoelectric devices. Liu [13], for example, proposed a new six-component force sensor with four identical T-shaped bars 
as force sensing members, and this strain-gauge-based sensor achieved good results in terms isotropy and sensitivity during static 
measurement. However, the results presented in the cited article are based purely on a theoretical study. Jacq [16] designed and 
fabricated a force/torque sensor having six degrees of freedom (DOFs) for wrist rehabilitation, and Sun [20] developed a six-axis force/ 
torque sensor equipped on the space robot that senses the three orthogonal forces and torques simultaneously. All these sensors 
perform well in terms of nonlinearity, repeatability, stability, hysteresis, sensitivity and accuracy but they are not used for dynamic 
measurements. Wu et al. [18] tested a multi-axis force strain-gauge-based sensor applied to a humanoid robot foot and verified that the 
sensor has good dynamic testing performance even at the low frequencies of walking. The strain-gauge-based sensor is selected in the 
present study as the sensing element for the measurement platform owing to its good static and low-frequency dynamic measurement 
performance. However, the previous measurement platforms based on strain gauge technology fail to measure dynamic disturbance 
forces in large mass and volume equipment, particularly in the low frequency band, considering the dynamic performance of the 
platform. 

The accuracy and stiffness of the measuring platform is determined not only by the choice of the different sensing elements 
mentioned above but also by the structures of the platform. Hitherto, two typical types of force measuring device have been extensively 
studied, namely cross-shape devices [4,6,9,31,32] and Stewart platform devices [28–30]. However, the introduction of coupling is 
unavoidable for measurements of large-mass vibration sources owing to the loose structure of the Stewart platform, which reduces the 
stiffness of the structure, and Stewart platform devices have large size and high installation requirements. The cross-shape devices do 
not have these disadvantages. Li [32] proposed a six-DOF force/moment sensor for heavy load measurement that adopted a four-point 
redundant parallel configuration and studied the structure of the sensor, the arrangement of the force sensing elements and a load 
sharing method. The designed sensor greatly reduces the size, improves the measurement accuracy and load capacity, and has good 
high frequency band dynamic characteristics. The downside to this measurement device is that it is more suited to mounting on arm 
joints, and it is not possible to mount a large vibration source on the device. Xia [4] manufactured a piezoelectric platform capable of 
measuring the disturbance force of large moving devices on the ground and improved the measurement platform stiffness using an 
eight-point support (involving eight piezoelectric sensors). However, redundant measurements inevitably introduce systematic errors, 
which reduce the accuracy of the measurement. Therefore, the cross-shaped (four-point) structure mentioned above is usually chosen 
to improve the rigidity and accuracy of the measurement platform. 

On the above basis, this paper proposes a strain-gauge-based quadrupedal low-frequency disturbance force measurement platform. 
To improve the sensitivity, stiffness and measurement accuracy, we conducted systematic work on the structural design, structural 
optimization and calibration algorithm. Section 2 describes the basic structure of the described platform and finds that the sensitivity 
and stiffness of the platform are a pair of contradictory indicators by means of finite element analysis (FEA). Section 3 optimizes the 
structural parameters of the strain monopodia of the platform adopting response surface methodology, such that the stiffness and 
sensitivity of the platform are obtained optimally. Section 4 systematically describes the working principle of the measurement 

Fig. 1. Basic model of the measurement system: (a) assembly model of the platform; (b) explosion model of the platform viewed from the top; (c) 
explosion model of the platform viewed from the bottom; (d) assembly model of the strain monopodium. 
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platform and improves the measurement accuracy through D optimization. Section 5 describes experiments conducted for the eval
uation of the static mechanical characteristics and dynamic mechanical characteristics of the platform, verifies that the proposed 
platform has better low frequency measurement accuracy than the piezoelectric platform and confirms the validity of the D optimi
zation. Conclusions are drawn in Section 6. 

2. Structural design 

2.1. Basic structure 

The structure of the measurement platform includes a load platform and four strain monopodia as shown in Fig. 1. A strain 
monopodium comprises a protection column, base and elastic body. The elastic body includes horizontal (position) beams (1), vertical 
beams (2), connecting blocks (3), upper block (4) and lower blocks (5) as shown in Fig. 2. 

The proposed platform is mounted on a vibration isolator via the base to reduce the unwanted effect of vibrations on the mea
surement, and the vibration source is fixed to the load platform. In this case, the vibration of the source can be measured by the 
platform. The proposed measurement platform differs from traditional strain-gauge-based sensors [20,22], which have only one elastic 
body for detecting the six-DOF forces/moments. One strain monopodium of the measurement platform in this paper is equivalent to a 
three-DOF force sensor used to detect the forces Fx, Fy and Fz. Thus, 12 forces from four strain monopodia can be used to solve for the 
six-DOF forces/moments of the vibration source (not all 12 output signals are used, the remaining output channels can be used as a 
backup and to improve measurement accuracy with D optimization). This improves the rigidity of the measurement platform while 
taking advantage of the high sensitivity and good low-frequency characteristics of the strain gauges. 

The Cartesian coordinate system is shown in Fig. 2. The x-axis vertical beams which are located on the x-axis and in the vertical 
position are used to detect Fx, the y-axis vertical beams are used to detect Fy, and the horizontal beams are used to detect Fz. The x-axis 
vertical beams, y-axis vertical beams and horizontal beams are orthogonal to each other, which effectively reduces the coupling error 
and improves the sensitivity. 

The strain monopodium has a protective function that prevents the elastic body from being destroyed in the case of overloading. 
The gaps between the protection column and elastic body are accurately obtained using the finite element method (FEM) and are 
determined by the overload capacity of the strain monopodium. 

2.2. FEA of the structure 

An FEA was performed on the designed strain monopodium, the model was meshed (tet10 elements which can adapt to complex 
geometries were mainly used, the number of elements in the model is 60555, the number of nodes is 14351) and the strain was 
calculated with MSC/Nastran software. Fig. 3 shows that the x-axis vertical beams have appreciable strain near the strain gauges when 
the strain monopodium is subjected to an x-directional force, whereas the y-axis vertical and horizontal beams have less strain near the 
strain gauges. There are similar situations when the strain monopodium is subjected to y-directional and z-directional forces. It is 
inferred that the strain monopodium has less dimensional coupling and the measurement accuracy will be improved. 

In addition, it is found that changing the structural parameters of the elastic body, as shown in Fig. 4, alters the sensitivity 
(characterized by the strain under a force of 1 N) and stiffness (characterized by the fundamental frequency) of the strain monopodium. 
Importantly, sensitivity and stiffness are a contradictory pair of indicators; i.e., an increase in sensitivity reduces the stiffness. It is thus 
necessary to find the optimal structural parameters of the elastic body so that the sensitivity and stiffness of the platform are optimized 

Fig. 2. Elastic body: (a) front view; (b) top view.  
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simultaneously and the platform can meet the measurement requirements of the optical facilities. In making the optimization more 
convenient, and because the dimensions of the load platform remain the same and the mounting position of the strain monopodium is 
invariant, we use the stiffness of the strain monopodium to characterize the stiffness of the measurement platform. 

3. Structural optimization 

3.1. Design conditions 

The required load capacity of the measurement platform is 500 kg. Owing to the good linearity and isotropy of the elastic body at 
the yield limit, we choose aluminum alloy for the manufacture of the elastomer. The material of the elastic body is 7075-T6 aluminum 
alloy, which has an elastic modulus E = 7.2 × 1010N/m2, Poisson’s ratio ν = 0.33, density ρ = 2.8 × 103 kg/m3, yield strength σs = 460 
MPa and safety factor S = 1.2. 

The full-bridge strain gauges are used to amplify the small strain. The parameters of the strain gauge are given in Table 1. 
Six parameter variables that affect the sensitivity and stiffness of the strain monopodium are set (Fig. 2): the length a1 and width b1 

of the hole in the horizontal beam, width c1 of the connecting block, length a2 and width b2 of the hole in the vertical beam, and length 

Fig. 3. FEA of the strain monopodium: (a) FEM mesh; (b) elastic strain (Z axis) under Fx = 1 N; (c) elastic strain (X axis) under Fz = 1 N.  

Fig. 4. FEA of the strain monopodium with different parameters.  

Table 1 
Parameters of the strain gauge.  

Parameters Gauge dimensions Substrate dimensions Gauge resistance Sensitivity factor 

Value 1 mm × 2 mm 3 mm × 5 mm 120 ± 0.1 Ω 2.08 ± 1 %  
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c2 between the center line of the hole in the vertical beam and the center line of the upper block. 

3.2. Optimization method 

To obtain the best performance of the strain monopodium, the structural parameters of the elastic body are optimized in MSC/ 
Patran software. The specific optimization process is presented in Fig. 5. There are numerous approaches to designing experiments 
[33–35], such as the central composite design and Box–Behnken design (BBD). The BBD, which is suitable for mechanical size opti
mization, was chosen because it avoids extreme points [36]. The range of values of the structural parameters to be optimized is given in 
Table 2. 

Because the structure of the elastic body is symmetrical, the elastic deformation is similar when the body is subjected to x- 
directional and y-directional forces. Therefore, for the convenience of simulation, only the maximum strain near the strain gauge when 
the elastic body is subjected to x-directional and z-directional forces is used as the objective function (Ex-max, Ez-max). In addition, the 
fundamental frequency of the strain monopodium is used as the objective function (Fq). On the basis of the BBD experimental design, 
54 sets of experiments were designed using the Design-Expert software. Each group of experiments is modeled and analyzed using the 
FEM, and the objective function values are recorded. 

3.3. Optimized result 

The expressions for Ex-max, Ez-max and Fq in the objective function can be obtained using response surface methodology: 

Ex − max = 113.68 + 0.34a1 − 7.17b1 − 0.54c1 + 3.68a2 − 22.70b2 − 0.95c2
− 0.34a2b2 + 0.60b1b2 + 0.16b1c2 − 0.04a22 + 1.43b22 (1)  

Ez − max = 66.23 − 1.96a1 − 14.78b1 − 0.19c1+ 0.30a1b1+ 0.89b12 (2)  

Fq = − 7134.71 + 34.30a1 + 861.55b1 + 130.95c1 + 51.19a2 + 1329.11b2
+46.96c2 − 16.22a1b1 + 1.40a1c1 + 0.95a1a2 + 10.07a1b2 − 0.61a1c2
+4.95a2b1 + 0.08a2c1 − 18.19a2b2 − 1.55a2c2 + 2.55b1c1 + 22.97b1b2
+0.76b1c2 − 2.51b2c1 − 6.26b2c2 − 0.73c1c2 − 1.61a12 − 71.20b12

− 1.80c12 + 0.96a22 − 92.72b22 + 0.17c22

(3) 

The equations contain the relationship between structural variables and platform fundamental frequency, structural variables and 
sensitivity, which can be used as a reference for optimization. The relationships between the structural parameter variables and the 
objective functions are shown in Figs. 6–8. 

An analysis of variance was performed on the objective functions of the approximate model. The results are given in Table 3. For all 
objective functions, p > 0.0001, R2 > 0.8, the difference between adjusted R2 and predicted R2 is less than 0.2, and the adequate 
precision is greater than 4, all of which meet the requirements. Eqs. (1) to (3) can thus be used to optimize the models. The final optimal 
parameters obtained are given in Table 2. 

The geometric model with the optimal structural parameters was subjected to FEA again, and its objective functions were recorded. 
Table 4 shows that the objective function values obtained using Eqs. (1) to (3) are similar to those obtained in the analysis. This 

Fig. 5. Flowchart of structural parameter optimization.  
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Table 2 
Parameter ranges for the elastic body.  

Variable a1 b1 c1 a2 b2 c2 

Range(mm) 4 ~ 12 7 ~ 9 18 ~ 25 5 ~ 15 7 ~ 9 14 ~ 32 
Optimal value(mm) 5 8.5 20.2 5 8.5 30  

Fig. 6. Response surface for Ex-max vs structural parameter variables.  

Fig. 7. Response surface for Ez-max vs structural parameter variables.  

Fig. 8. Response surface for Fq vs structural parameter variables.  

Table 3 
Results of an analysis of variance.  

Indicators p values R2 Adjusted R2 Predicted R2 Adequate precision 

Ex-max  <0.0001  0.89  0.86  0.81  24.85 
Ez-max  <0.0001  0.82  0.81  0.79  21.36 
Fq  <0.0001  0.99  0.98  0.95  40.44  
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similarity confirms that the optimized parameters can be used to manufacture the measurement platform. 
The FEA of the entire measurement platform with optimal structural parameters was carried out (hex8 elements which have better 

computational accuracy were mainly used). A z-directional force of 1 N was applied to the measuring platform. Fig. 9 shows that the 
maximum stress in the platform under the force is 3.31 × 10− 2 MPa. Knowing that the Young’s modulus of the material σs is 460 MPa 
and setting the safety factor S to 1.2, the permissible maximum stress can be expressed as σFs ≤ σs/S = 383 MPa. The load capacity of 
the platform is calculated as being greater than 1000 kg, which is sufficient for the requirements. 

4. Measurement principle 

The designed measurement platform is mainly used to measure the dynamic disturbance force, and its calculation principle is thus 
based on spectrum analysis, as the time domain signal contains little dynamic information. As previously mentioned, a strain 
monopodium is equivalent to a three-dimensional force sensor that can be used to measure Fx(ω), Fy(ω) and Fz(ω) and is known to have 
weak dimensional coupling through FEA. One strain monopodium subjected to a z-directional disturbance force is analyzed. Fig. 2 
clearly shows that the magnitudes of deformation of R1, R2, R3 and R4 are the same (where R1 and R2 have the same direction of 
deformation and R3 and R4 have the same direction of deformation), and the distribution of the four strain gauges in the full bridge is 
shown in Fig. 10. The output voltage of the i-th strain monopodium subjected to a disturbance force in the z-direction is expressed as 

Vout − iz(ω) =

(
R4(ω) + ΔR4(ω)

R1(ω) − ΔR1(ω) + R4(ω) + ΔR4(ω) −
R3(ω) − ΔR3(ω)

R2(ω) − ΔR2(ω) + R3(ω) + ΔR3(ω)

)

Vin − iz(ω) (4) 

On the basis that R1(ω) = R2(ω) = R3(ω) = R4(ω) = R(ω) and Δ R1(ω) = Δ R2(ω) = ΔR3(ω) = Δ R4(ω) = Δ R(ω), Eq. (4) can be 
rewritten as 

Vout - iz(ω) =
ΔR(ω)
R(ω) Vin - iz(ω) (5) 

Vout-ix(ω) and Vout-iy(ω) are obtained in the same way. At this point, the three-dimensional disturbance force Fmono-i(ω) acting on the 
i-th strained monopodium is calculated as 

Fmono - i(ω) =

⎡

⎣
Fix(ω)
Fiy(ω)

Fiz(ω)

⎤

⎦ =

⎡

⎣
ai1(ω) ai2(ω) ai3(ω)
ai4(ω) ai5(ω) ai6(ω)
ai7(ω) ai8(ω) ai9(ω)

⎤

⎦

⎡

⎣
Vout - ix(ω)

Vout - iy(ω)

Vout - iz(ω)

⎤

⎦i = 1, 2, 3, 4 (6) 

Eq. (6) is equivalent to 

Fmono - i(ω) = Ai(ω)Vi(ω) (7) 

Therefore, 12 Fix(ω), Fiy(ω) and Fiz(ω) are currently available for the four strain monopodia and can be used to calculate the six- 
dimensional disturbance force of the vibration source. In order to introduce as little systematic error as possible, suppose m of the 
12 forces are selected and relabeled as F1(ω),F2(ω), …, Fm(ω) and the corresponding output voltages are denoted V1(ω),V2(ω), …, 
Vm(ω). The expression for the source disturbance force F(ω) is obtained as 

F(ω) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

Fx(ω)

Fy(ω)

Fz(ω)

Mx(ω)
My(ω)
Mz(ω)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

= B(ω)

⎡

⎢
⎢
⎣

F1(ω)
F2(ω)

⋮
Fm(ω)

⎤

⎥
⎥
⎦ = D(ω)

⎡

⎢
⎢
⎣

V1(ω)

V2(ω)

⋮
Vm(ω)

⎤

⎥
⎥
⎦ (8)  

where B(ω) is the transformation matrix of the m output forces from the strain monopodia and the vibration source disturbance force. 
Equation (8) is equivalent to 

F(ω) = D(ω)V(ω) (9)  

where D(ω) is the 6 × m coefficient matrix, and the source disturbance force F(ω) can be calculated if D(ω) can be determined. 
The vibration source location, mass, moisture, temperature and environmental disturbances are uncertainties in each measure

ment, and thus to reduce the effects of these factors on the measurement accuracy, a calibration experiment is conducted before each 
measurement to determine which m output voltages should be selected from strain monopodia as V(ω) and to re-obtain the matrix D 

Table 4 
Comparison of simulated and predicted values of the objective function.  

Objective function Ex-max Ez-max Fq(Hz) 

Predicted values  13.8  8.4  2168.13 
Simulated values  13.9  8.1  2153.68 
Relative error  0.72 %  3.57 %  0.67 %  
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Fig. 9. FEA of the measurement platform: (a) FEM mesh; (b) stress under Fz = 1 N; (c) fundamental frequency.  

Fig. 10. Schematic of the full bridge circuit.  

Fig. 11. Test system.  
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(ω). 
In the calibration experiment, Fc(ω) is the known disturbance force (where the subscript c indicates calibration), Vc-cs(ω) denotes 

the 12 measured output voltages (called the candidate set), and m output voltages are selected from the candidate set to form Vc(ω). We 
have the equation 

Vc(ω) = Ec(ω)Fc(ω) (10) 

The coefficient matrix is obtained using the pseudo-inverse matrix from Eq. (10): 

Ec(ω) = Vc(ω)FcT(ω)[Fc(ω)FcT(ω)]
− 1 (11) 

Substituting Eq. (11) into Eq. (10) yields the estimate of the disturbance force Fc’(ω): 

Fc′

(ω) = [EcT(ω)Ec(ω)]− 1Ec(ω)Vc(ω) (12) 

The accuracy of the estimated input disturbance force Fc ́(ω) depends on the selection of m output voltages from Vc-cs(ω). We use D 
optimization [37–39] to select the optimal Vc(ω). 

Assuming that the errors in strain measurement are statistically independent and that their standard deviation is σ, the covariance 
matrix of Fc ́(ω) is var[Fc’(ω)] = σ2[Ec

T(ω)Ec(ω)]− 1, where σ2 is a constant and [Ec
T(ω)Ec(ω)] − 1 is the sensitivity of Fc ́(ω); lower 

sensitivity corresponds to higher accuracy of Fć(ω) [37]. Therefore, the most accurate Fć(ω) can be obtained by selecting the m output 
voltages that maximize the value of |Ec

T(ω)Ec(ω)| (which is called D optimal design, where D refers to the determinant), and the 
optimal output voltage Vc(ω) can be found using the sequential exchange method [40]. The coefficient D(ω) can be expressed as 

D(ω) = [EcT(ω)Ec(ω)]
− 1Ec(ω) (13) 

From the above calculation steps, we can obtain expression (9) used to solve for the disturbance force of the vibration source. The 
proposed measurement platform can also be used for static force measurements, with the measurement principles being the same as 
those described above. 

5. Experiment 

On the basis of the design and optimization mentioned above, a prototype of the measurement platform was manufactured. Strain 
gauges were affixed to the elastic bodies of the four strain monopodia (shown in Fig. 11). After the calibration test of the platform, the 
dynamic and static mechanical characteristics of the platform were investigated. 

5.1. Platform parameter verification and calibration experiments 

Fig. 11 shows a test system comprising a measurement platform, reaction wheel assembly (RWA), data acquisition equipment 
(precision: ±0.1 dB; 652u-24 bit, IOtech, Norton, MA, USA), static force loading tool, and force hammer (5800B5, PCB; sensitivity: 
1.128 mV/N). 

Firstly, the measurement of the platform’s fundamental frequency was carried out. Without installing the RWA and the static force 
loading tool, the striking of a force hammer on the measurement platform provided a platform fundamental frequency of 749.5 Hz (as 
shown in Fig. 12, where the output of channel 1 was selected randomly and the output voltage from the channel can be calculated as a 
strain value) at a sampling frequency of 4096 Hz (to avoid aliasing and to improve computational efficiency, the sampling factor is 2.56 
throughout the paper) whereas the simulation result is 712.5 Hz as shown in Fig. 9. The experimental results show that the dynamic 

Fig. 12. Output of channel 1 (which introduces noise into the signal).  
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characteristics of the platform can be obtained accurately using the simulation model. A fundamental frequency of 749.5 Hz is 
adequate for meeting the requirements of the measurement range of 3–300 Hz for the optical facility, where the RWA was used as the 
vibration source of the optical facility. 

The coordinates of points of the input forces were determined to obtain the subsequent matrix C prior to mounting the RWA for 
calibration experiments. The coordinates of the input force points on the RWA were measured with a portable measuring arm 
(Hexagon Absolute Arm 6-Axis, model 8725–6) as shown in Fig. 13-a, with the coordinates originating from the center of the upper 
plane of the RWA base. The RWA coordinate system and the locations of the calibration points are shown in Fig. 13b and c. The 
coordinates of the six input points are given in Table 5. 

After that, the calibration is ready to start. The RWA was then mounted on the measurement platform (shown in Fig. 11, dynamic 
tests). The force hammer was used to input the impact signals via the measured calibration points and the data acquisition equipment 
was used to obtain the 12 output signals. The dynamic calibration matrix D(ω) in Eq. (9) can be obtained with this system. In the 
dynamic calibration experiments, the force hammer was used to hammer at six calibration points sequentially. Each point was 
hammered three times and the data from the hammer and output channels were then averaged as Fc(ω) and Vc(ω) to reduce the effect of 
random errors. Note that the input forces here need to be converted to the forces and moments acting at the center of the upper plane of 
the RWA base in the time domain using Eq. (14), where C is given by Eq. (15) and Fin-i is the input force acting at point i. Using six 
output signals for the calculation (i.e., m = 6, to introduce less systematic errors and avoid ill-conditioning matrices), the calibration 
matrix D(ω) can be determined as expressed in Eq. (16) adopting Eqs. (10)–(13) and D optimal design. Which six channels are optimal 
can also be determined. When adopting a data sampling frequency of 1024 Hz (because the frequency band of interest for the RWA is in 
the range of 3–300 Hz) and a sampling time of 8 s, each element of the calibration matrix Dij(ω) has a length of 8192 and an effective 
bandwidth of 1/12.8–400 Hz. The equations are 

Fc(t) = C

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

Fin - 1(t) 0 0 0 0 0
0 Fin - 2(t) 0 0 0 0
0 0 Fin - 3(t) 0 0 0
0 0 0 Fin - 4(t) 0 0
0 0 0 0 Fin - 5(t) 0
0 0 0 0 0 Fin - 6(t)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(14)  

Fig. 13. Measurement of input force points: (a) measuring equipment; (b) coordinate system and input force points for the RWA; (c) positions of the 
input force points on the RWA in the software. 
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C =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 1 0 1 - 1
0 0 0 1 0 0
- 1 - 1 0 0 0 0

0.001959 0.131544 0 - 0.129263 0 0
- 0.089581 0.000809 0.113988 0 0.115309 - 0.114287

0 0 - 0.000372 0.032090 0.054559 - 0.080017

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(15)  

D6×6(ω) =

⎡

⎣
D11(ω) ⋯ D16(ω)

⋮ ⋱ ⋮
D61(ω) ⋯ D66(ω)

⎤

⎦ (16)  

5.2. Dynamic mechanical performance test 

The forces to be measured at optical facilities range in magnitude from a few Newtons to several hundred Newtons, and good 
linearity is thus fundamental to the platform. We verified dynamic linearity by conducting a calibration experiment. Using a hammer, 
impulses of different amplitudes were input to the RWA to obtain a transfer function between calibration point 1 and output channel 2 
(Fig. 14). Using an input force of 54.1 N as a reference, the relative errors for input pulses of 26.4 and 96.7 N are presented in Table 6, 
showing an average relative error of 4.28 %. This approach is intended to describe the linearity of individual output over a wide 
frequency band and does not adequately reflect the dynamic linearity of the six-dimensional output of the platform after dynamic 
calibration. 

The precision of the platform was then tested by measuring the impact signal in the frequency domain. By applying a force to the 
RWA with a force hammer, the input force was calculated by substituting the data of the six optimal channels from D optimization into 
Eq. (9). A plot of the actual input (Fx) versus the measured force is shown in Fig. 15. The dynamic relative error of the platform can be 
calculated to be within 3 %. The figure shows that the strain measuring platform has good low-frequency measurement capability. In 
addition, the calculation of an arbitrary selection of 6 channels without D optimization gives a red curve as shown in Fig. 15, which 
shows that D optimization has selected the channels with better signal quality and improved measurement accuracy. 

In addition, the actual in-orbit vibration source disturbance was simulated through a six-dimensional disturbance simulator [41] to 
further examine the precision of the platform under multi-frequency sinusoidal excitation, especially in the low frequency band (re- 
calibration has been carried out before the measurement). The test system is shown in Fig. 16. The simulator was fitted with a load that 
allows the simulator to provide higher accuracy in low frequency vibration. In the Fig. 17, the disturbance outputs (Fx, My) of the in- 

Table 5 
Coordinates of the calibration force input points.   

Position (mm) 

Direction Point 1 Point 2 Point 3 Point 4 Point 5 Point 6 

X-axis  − 89.581  0.809  − 38.842  32.090  − 30.724  102.5 
Y-axis  − 1.959  − 131.544  0.372  97.794  − 54.559  − 80.017 
Z-axis  0.000  0.000  113.988  129.263  115.309  114.287  

Fig. 14. Transfer function (with the RWA) for different amplitude impulses.  
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orbit CMG and cryocooler were simulated, where 46.7 Hz was the CMG disturbance frequency, 80 Hz was the cryocooler disturbance 
frequency, and the 8 Hz excitation was to detect the low frequency characteristics of the system. The data in the Fig. 17 shows that the 
dynamic measurement accuracy of the platform is within 5.6 %, which is good even at low frequencies. 

We next tested the vibration of the RWA at different speeds as a practical application of the platform. A measuring platform 
described in the literature [4] (having dynamic relative error less than 5 %) was used for comparison. Fig. 18 shows that the piezo
electric measuring platform measures disturbance forces of the RWA. The RWA was controlled using an STM 32 with a proportio
nal–integral–derivative algorithm to change its speed. The RWA was spun at rates ranging between 60 and 2940 revolutions per 

Table 6 
Relative error of the transfer function for different amplitude impulses.  

Frequency range (Hz) Relative error (%) 

26.4 N 96.7 N 

3–50  3.46  2.91 
50–100  6.98  5.16 
100–150  3.59  2.27 
150–200  6.36  7.05 
200–250  1.55  4.16 
250–300  6.35  1.56  

Fig. 15. Comparison of the impact input force (Fx) with the measured force.  

Fig. 16. Test system with simulator.  

C. Zhou et al.                                                                                                                                                                                                           



Mechanical Systems and Signal Processing 188 (2023) 110032

13

Fig. 17. Comparison of the input force generated by the simulator with the measured force by strain gauges platform.  

Fig. 18. Piezoelectric measuring platform for measuring disturbance forces of the RWA.  
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minute (RPM) in increments of 60 RPM, and disturbances were measured for each speed at a sampling rate of 1024 Hz for 8 s. 
Similarly, measurements were made of the RWA disturbance force using a strain-gauge-based measuring platform. A waterfall plot of 
the RWA x-direction force and y-direction moment measured using the strain measuring platform is shown in Fig. 19. The figure shows 
the rocking mode of the RWA, which represents both forward and reverse processions and forms a V-shaped curve. Additionally, the 
structural mode curve in Fig. 19 does not change with variations in the rotor speed and is mainly related to the elasticity of the 
structure. Fig. 20 compares the x-direction disturbance forces measured by the piezoelectric and strain platforms at speed of 1980 
RPM. It can be seen that the vibration curves obtained using the strain platform and piezoelectric platform coincide well in high 
frequency band, but piezoelectric platform has poor low frequency measurement accuracy. 

Fig. 20 also compares the disturbance forces obtained with and without D optimization using the strain-gauge-based platform. The 
vibration curves obtained with D optimization are clearly of higher quality, which demonstrates the effectiveness of D optimization. It 
is assumed that D optimization selects the optimal output channels that are less disturbed by noise and improves the measurement 
accuracy. 

5.3. Static mechanical performance test 

The static mechanical characteristics of the platform were tested and experiments were carried out to investigate the linearity, 
repeatability and relative error. A schematic of the test system and photograph of the measurement equipment are shown in Fig. 21. 
The principle of the static force test was exactly the same as that of the dynamic force test. The limits of the force and moment in this 
test were 500 N and 300 Nm, respectively. The output without a load was recorded before the measurement experiment and subtracted 
from the measurement results. 

Photograph of the measurement equipment. 

In the test, a force sensor (208C03, PCB; sensitivity: 2.248 mV/N; resolution: 0.02 N-rms; range: 2.224 kN) was used to detect the 

Fig. 19. Waterfall diagram of the RWA disturbance force measured using the strain-gauge-based platform: (a) Fx; (b) My.  
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Fig. 20. Disturbance forces Fx measured at 1980 RPM.  

Fig. 21. Static mechanical performance test system: (a) schematic diagram of the system;  
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magnitude of the loading force and the weights (5 kg; precision: ±1%) were loaded one by one. The loading and unloading process was 
repeated three times. The input and measured forces are shown in Fig. 22. Table 7 statistically presents the static characteristics 
parameters, showing that the linearity of the platform is within 1.5 %FS, the repeatability is within 1.1 %FS and the static relative error 
is within 5 %FS. 

6. Conclusions 

This paper described the design, optimization, analysis and testing of a quadrupedal dynamic disturbance force measurement 
platform that can be used to measure the disturbance force of low-frequency sources in large optical facilities. The use of four strain 
monopodia improves the rigidity of the platform. Response surface methodology is adopted to balance the sensitivity and stiffness of 
the platform, whereas the precision is improved through D optimization. Simulation and experimental results show that the load 
capacity of the platform is greater than 1000 kg and the dynamic relative error in the frequency range of 3–300 Hz is less than 5.6 %, 
whereas the peak value remains near 10 %. The static relative error of the platform is within 5 %, the linearity of the platform is within 

Fig. 22. Static input force vs measured force.  

Table 7 
Statistical data on static mechanical properties.  

Force/Moment (N; Nm) Nonlinearity (%FS) Repeatability error (%FS) Static relative error (%FS) 

Fx  0.82  0.96  2.14 
Fy  1.20  1.01  3.31 
Fz  1.03  0.44  2.07 
Mx  1.42  0.61  1.83 
My  0.81  0.53  0.96 
Mz  1.13  0.62  1.24  
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1.5 %FS, and the repeatability is within 1.1 %FS. The platform has good performance in terms of its low-frequency dynamic char
acteristics, stiffness and accuracy. The analysis and optimization methods adopted in this paper can be applied to measurement 
platforms of other size and type. 
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[26] A. Warsewa, M. Böhm, F. Guerra, J.L. Wagner, T. Haist, C. Tarín, O. Sawodny, Self-tuning state estimation for adaptive truss structures using strain gauges and 

camera-based position measurements, Mech. Syst. Sig. Process. 143 (2020) 106822. 
[27] C.J. Li, A. Galip Ulsoy, High-precision measurement of tool-tip displacement using strain gauges in precision flexible line boring, Mech. Syst. Sig. Process. 13 (4) 

(1999) 531–546, https://doi.org/10.1006/mssp.1999.1223. 
[28] T.A. Dwarakanath, B. Dasgupta, T.S. Mruthyunjaya, Design and development of a Stewart platform based force–torque sensor, Mechatronics 11 (7) (2001) 

793–809, https://doi.org/10.1016/S0957-4158(00)00048-9. 

C. Zhou et al.                                                                                                                                                                                                           

https://doi.org/10.1088/1674-4527/21/4/92
https://doi.org/10.1088/1674-4527/21/4/92
http://refhub.elsevier.com/S0888-3270(22)01100-1/h0010
http://refhub.elsevier.com/S0888-3270(22)01100-1/h0010
https://doi.org/10.3390/s20226523
https://doi.org/10.1016/j.jsv.2019.01.053
http://refhub.elsevier.com/S0888-3270(22)01100-1/h0025
http://refhub.elsevier.com/S0888-3270(22)01100-1/h0025
https://doi.org/10.1016/j.ymssp.2012.03.016
https://doi.org/10.1016/j. sna.2015.09.027
https://doi.org/10.1016/j.sna.2016.09.031
https://doi.org/10.1016/j.sna.2016.09.031
https://doi.org/10.1016/j. isatra.2017.07.008
http://refhub.elsevier.com/S0888-3270(22)01100-1/h0050
http://refhub.elsevier.com/S0888-3270(22)01100-1/h0050
http://refhub.elsevier.com/S0888-3270(22)01100-1/h0055
https://doi.org/10.1016/S0924-4247 (97)01534-3
https://doi.org/10.1016/S0924-4247 (97)01534-3
https://doi.org/10.1016/S0924-4247(02)00135-8
https://doi.org/10.1016/S0924-4247(02)00135-8
https://doi.org/10.1016/j.sna. 2004.07.013
https://doi.org/10.1016/j.sna. 2004.07.013
https://doi.org/10.1016/j.sna.2006.03.038
https://doi.org/10.1016/j.sna.2006.03.038
http://refhub.elsevier.com/S0888-3270(22)01100-1/h0080
http://refhub.elsevier.com/S0888-3270(22)01100-1/h0080
http://refhub.elsevier.com/S0888-3270(22)01100-1/h0085
http://refhub.elsevier.com/S0888-3270(22)01100-1/h0085
https://doi.org/10.1016/j. measurement.2011.06.013
https://doi.org/10.3390/s130506669
https://doi.org/10.3390/s130506669
http://refhub.elsevier.com/S0888-3270(22)01100-1/h0100
https://doi.org/10.1109/jsen.2016.2631259
http://refhub.elsevier.com/S0888-3270(22)01100-1/h0110
http://refhub.elsevier.com/S0888-3270(22)01100-1/h0110
https://doi.org/10.3390/s19143156
http://refhub.elsevier.com/S0888-3270(22)01100-1/h0120
http://refhub.elsevier.com/S0888-3270(22)01100-1/h0120
http://refhub.elsevier.com/S0888-3270(22)01100-1/h0130
http://refhub.elsevier.com/S0888-3270(22)01100-1/h0130
https://doi.org/10.1006/mssp.1999.1223
https://doi.org/10.1016/S0957-4158(00)00048-9


Mechanical Systems and Signal Processing 188 (2023) 110032

18

[29] Y.L. Hou, et al., Optimal design of a hyperstatic Stewart platform-based force/torque sensor with genetic algorithms, Mechatronics 19 (2) (2009) 199–204, 
https://doi.org/10.1016/j.mechatronics.2008.08. 002. 

[30] Z.Y. Jia, S. Lin, W. Liu, Measurement method of six-axis load sharing based on the Stewart platform, Measurement 43 (3) (2010) 329–335, https://doi.org/ 
10.1016/j.measurement.2009.11.005. 

[31] Y.-J. Li, B.-Y. Sun, J. Zhang, M. Qian, Z.-Y. Jia, A novel parallel piezoelectric six-axis heavy force/torque sensor, Measurement 42 (5) (2009) 730–736. 
[32] Y.-J. Li, J. Zhang, Z.-Y. Jia, M. Qian, A novel piezoelectric 6-component heavy force/moment sensor for huge heavy-load manipulator’s gripper, Mech. Syst. Sig. 

Process. 23 (5) (2009) 1644–1651. 
[33] Khuri, et al., Response surface methodology, Wiley Interdiscip. Rev. Comput. Stat. 2 (2) (2010) 128–149, https://doi.org/10.1002/wics.73. 
[34] G.E.P. Box and K.B. Wilson. On the experimental attainment of optimum conditions. Breakthroughs in statistics. Springer, New York, NY, 1992. 270-310. 

https://doi.org/10.1007/978-1- 4612 -4380-9_23. 
[35] T.A. Reddy. Applied Data Analysis and Modeling for Energy Engineers and Scientists. Springer, 2011. 
[36] S.L.C. Ferreira, R.E. Bruns, H.S. Ferreira, G.D. Matos, J.M. David, G.C. Brandão, E.G.P. da Silva, L.A. Portugal, P.S. dos Reis, A.S. Souza, W.N.L. dos Santos, Box- 

Behnken design: An alternative for the optimization of analytical methods, Anal. Chim. Acta 597 (2) (2007) 179–186. 
[37] D.K. Gupta, A.K. Dhingra, Input load identification from optimally placed strain gages using D-optimal design and model reduction, Mech. Syst. Sig. Process. 40 

(2) (2013) 556–570, https://doi.org/10.1016/j.ymssp.2013.06.011. 
[38] D.K. Gupta, A.K. Dhingra, A reduced modal parameter based algorithm to estimate excitation forces from optimally placed accelerometers, Inverse Prob. Sci. 

Eng. 25 (3) (2017) 397–417, https://doi.org/10.1080/17415977.2016.1169276. 
[39] D.K. Gupta, A.K. Dhingra, Dynamic programming approach to load estimation using optimal sensor placement and model reduction, Int. J. Comput. Methods 15 

(08) (2018) 1850071. 
[40] Z. Galil, J. Kiefer. Time- and space-saving computer methods, related to Mitchell’s DETMAX, for finding D-Optimum designs. Technometrics 22 (1980) 301-313. 

https://doi.org/10.1080 /00401706 .1980.10486161. 
[41] X. Wang, Z. Xu, M. Xia, S. He, H. Li, Q. Wu, Research on a six-degree-of-freedom disturbance force and moment simulator for space micro-vibration experiments, 

J. Sound Vibr. 432 (2018) 530–548. 

C. Zhou et al.                                                                                                                                                                                                           

https://doi.org/10.1016/j.mechatronics.2008.08. 002
https://doi.org/10.1016/j.measurement.2009.11.005
https://doi.org/10.1016/j.measurement.2009.11.005
http://refhub.elsevier.com/S0888-3270(22)01100-1/h0155
http://refhub.elsevier.com/S0888-3270(22)01100-1/h0160
http://refhub.elsevier.com/S0888-3270(22)01100-1/h0160
https://doi.org/10.1002/wics.73
http://refhub.elsevier.com/S0888-3270(22)01100-1/h0180
http://refhub.elsevier.com/S0888-3270(22)01100-1/h0180
https://doi.org/10.1016/j.ymssp.2013.06.011
https://doi.org/10.1080/17415977.2016.1169276
http://refhub.elsevier.com/S0888-3270(22)01100-1/h0195
http://refhub.elsevier.com/S0888-3270(22)01100-1/h0195
http://refhub.elsevier.com/S0888-3270(22)01100-1/h0205
http://refhub.elsevier.com/S0888-3270(22)01100-1/h0205

	Design and optimization of a quadrupedal dynamic disturbance force measurement platform using strain gauges
	1 Introduction
	2 Structural design
	2.1 Basic structure
	2.2 FEA of the structure

	3 Structural optimization
	3.1 Design conditions
	3.2 Optimization method
	3.3 Optimized result

	4 Measurement principle
	5 Experiment
	5.1 Platform parameter verification and calibration experiments
	5.2 Dynamic mechanical performance test
	5.3 Static mechanical performance test

	6 Conclusions
	Funding
	Declaration of Competing Interest
	Data availability
	References


