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A B S T R A C T   

In this paper, an inhomogeneous stabilized node-based smoothed radial point interpolation method (ISNS-RPIM) 
is developed for analyzing functionally graded magneto-electro-elastic (FGMEE) structures in hygrothermal 
environment. The change of material gradient follows the exponential function distribution. Combining with the 
gradient smoothing technique (GST) and the coupling constitutive relationship, and considering the 
hygrothermo-magneto-electro-elastic (HMEE) coupling effects of FGMEE material, the equations for ISNS-RPIM 
are deduced. The generalized displacement of the FGMEE structures is obtained, and the error in total energy 
norm, CPU time and efficiency of ISNS-RPIM, NS-RPIM and FEM are researched. Numerical examples are pro-
vided to explore the influence of the following parameters in FGMEE structures including exponential factor, 
hygrothermal loading and empirical constants, and demonstrate the correctness, high effectivity and insensitivity 
to mesh distortion of ISNS-RPIM. The present method has shown great potential in solving practical complex 
problems.   

1. Introduction 

As an inhomogeneous composite, functionally graded material 
(FGM) is utilized extensively in engineering applications: aerospace 
vehicles and electronic products, etc., the composition and properties of 
FGM could vary continuously along one or more specific directions 
[1–4]. Due to the property of reducing the stress concentration in 
layered composites, FGM has been widely concerned by researchers [5]. 
Scholars have made magneto-electro-elastic material (MEE) by 
combining piezomagnetic materials with piezoelectric materials. This 
material exhibits the unique ability in energy interconversion in 
multi-physic fields, which is used in a variety of energy harvesting sys-
tems, sensors, etc. [6–10]. Combining the merits of FGM and MEE ma-
terial, FGMEE material is proposed to produce intelligent structures with 
higher performance. Recently, the multi-physics coupling analysis 

(thermal environment, humidity, mechanical loads) for FGMEE material 
is a new topic due to the complexity of the working environment of 
intelligent devices. 

The mechanical behavior of FGMEE structures has been deeply 
studied [11–14], among many algorithms, the finite element method 
(FEM) has been broadly developed [15,16]. Bhangale and Ganesan [17, 
18] have calculated the natural frequency and static responses of the 
FGMEE plate under simply-supported boundary conditions and different 
exponential factors. Zenkour et al. [19–21] studied the infinite FGMEE 
hollow cylinder in thermal environment and calculated the radial 
displacement, temperature and stresses. Kattimani et al. [22,23] inves-
tigated the geometric nonlinear problems of traditional FGMEE plates 
using FEM. Then, they researched the porous FGMEE structures. The 
wave dispersion properties for nano-FGMEE beams were studied by 
Ebrahimi et al. [24], errors between the results and the analytical 
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solutions were small. Mahesh et al. [25,26] researched the influence of 
MEE coupling effect in thermal environment on dynamic problems of 
FGMEE plates and carbon reinforced FGMEE structures, respectively. 
Recently, Vinyas [27] analyzed the dynamics of porous annular and 
circular FGMEE plates and obtained the factors affecting the frequency 
of the structures. 

Studies have shown that hygrothermal environment could make 
smart structures more sensitive and FGMEE materials under hygro-
thermal loadings could produce various multi-physics coupling effects 
(Fig. 1) [28]. Vinyas et al. [29–31] considered the influence of thermal 
and hygroscopic field effects and investigated the response of MEE 
plates using FEM. Then, the research was extended to the skew MEE 
plate [32]. Dai et al. [5] obtained the responses of porous FGMEE 
annular plate subject to hygrothermal loadings. FGMEE nano-plate’s 
damped frequency was calculated by Jafari et al. [33]. Saadatfar [1] 
considered the creep strain and analyzed the FGMEE hollow cylinders in 
hygrothermal environment under plane strain conditions and obtained 
the generalized displacement. Nguyen-Thoi et al. [34] investigated a 
numerical method for solving porous FGMEE plates about the free vi-
bration and optimizing control problems. 

With the constant advancement of numerical approaches, re-
searchers devoted themselves to developing various algorithms to solve 
complex problems more accurately. Liu [35] proposed a series of 
smoothed FEMs to efficiently solve acoustic problems [36,37], 
multi-physics coupling problems [38], etc. Liu and Zhang [39] com-
bined the generalized GST and weakened weak (W2) form with RPIM to 
propose the smoothed RPIM (S-RPIM) [39,40], whose governing equa-
tions are without independent variable’s derivative. The W2 form 
without the derivative terms reduces the requirement of the approxi-
mation function [41]. In this article, the multi-physics coupling prob-
lems are solved using node-based S-RPIM (NS-RPIM) whose smoothing 
area is based on field nodes [42–44]. The essential boundary condition is 
easy to apply owing to the RPIM shape function satisfying the properties 
of Kronecker Delta functions. About strain energy, NS-RPIM has the 
advantage of upper bound property over FEM. Coordinate trans-
formation and mapping are not required is another feature of NS-RPIM, 
thus NS-RPIM performs well in dealing with mesh distortion problems 
[45–47]. However, models constructed based on node-based smoothed 
numerical methods are ‘overly-soft’, this property could result in tem-
poral instability in free vibration analysis or dynamic analysis [39,48]. 
Recently, stable node-based FEM was proposed to solve practical engi-
neering problems including fracture analysis [49], acoustic problems 
[50,51], multi-physics coupling problems [48,52,53], elasticity prob-
lems [54,55], etc. Due to the stable terms, the node-based smoothed 
models’ non-zero energy modes were eliminated. 

In the previous work [52,56], stabilized NS-RPIM (SNS-RPIM) was 
applied to investigate the FGMEE and MEE material in the presence of 

temperature conditions, then we investigated the factors affecting the 
responses of MEE materials under hygrothermal loadings. In this work, 
we proposed an ISNS-RPIM to accurately study the inhomogeneous 
HMEE coupling effects. Considering the HMEE coupling effect, the 
constitutive equations were derived. The node-based smoothing domain 
was established by triangular cells, then the domain was closed to a 
circular region with equal area. Four supplementary integration points 
are selected to derive the stable terms. This stabilization operation does 
not include any uncertain parameters, which is very simple. The nu-
merical examples demonstrated the characteristics of ISNS-RPIM 
including temporal stability, high accuracy and efficiency for 
analyzing FGMEE materials. The main influencing factors of the FGMEE 
structure are analyzed, including the exponential factor, temperature 
and moisture concentration variation, and empirical constants. 

Structure of this paper: In Section 2, the basic theories of FGMEE 
materials are introduced. Section 3 represents ISNS-RPIM. Section 4 
contains numerical examples using ISNS-RPIM. The last section contains 
our conclusions. 

2. Basic equations of FGMEE materials 

As for FGMEE materials, the coefficients are considered to vary 
constantly along z-direction. The expressions of the coefficients are 

C(x) = C0f (x), e(x) = e0f (x),q(x) = q0f (x) (1)  

ε(x) = ε0f (x),μ(x) = μ0f (x),m(x) = m0f (x) (2)  

β(x) = β0f (x), p(x) = p0f (x), τ(x) = τ0f (x) (3)  

χ(x) = χ0f (x), ξ(x) = ξ0f (x), γ(x) = γ0f (x) (4)  

where C, e and q represent elastic, piezoelectric and piezomagnetic co-
efficient matrices, respectively. ε, μ and m represent the dielectric, 
magnetic permeability and magneto-electric coefficient matrices, 
respectively. β, χ, p, ξ, τ and γ are the vectors of thermal expansion, 
moisture expansion, pyroelectric, hygroelectric, pyromagnetic and 
hygromagnetic coefficient, respectively. z denotes the value of space 
coordinates in z-direction. C0, e0, q0, ε0, μ0, m0, β0, p0, τ0, χ0, ξ0 and 
γ0 are the corresponding material constants for the bottom margin of the 
structural geometry. f(x) denotes the exponential function, whose 
expression is 

f (x) = e
nz
w (5)  

where n and w denote the exponential factor and the thickness of the 
structure, respectively. z is the spatial coordinate. 

For FGMEE structures, the constitutive equations are 

Fig. 1. Hygrothermo-magneto-electro-elastic coupling effects.  

L. Zhou et al.                                                                                                                                                                                                                                    



Engineering Analysis with Boundary Elements 151 (2023) 406–422

408

⎧
⎨

⎩

σ(x)
D(x)
B(x)

⎫
⎬

⎭
=

⎡

⎣
C(x) − e(x) − q(x)
eT(x) ε(x) m(x)
qT(x) mT(x) μ(x)

⎤

⎦

⎧
⎨

⎩

S(x)
E(x)
H(x)

⎫
⎬

⎭

+

⎡

⎣
− C(x)(β(x)ΔT + χ(x)Δm)

p(x)ΔT + ξ(x)Δm
τ(x)ΔT + γ(x)Δm

⎤

⎦ (6)  

where σ(x), D(x) and B(x) are the vectors of stress, electrical displace-
ment and magnetic field intensity, respectively. ΔT = T− T0, Δm =
m− m0, T and T0 represent the final temperature and reference temper-
ature, m and m0 represent the final moisture concentration and reference 
moisture concentration. The temperature and moisture concentration 
rise uniformly. 

The equilibrium equations are 

∇⋅σ(x) = 0 (7)  

∇⋅D(x) = 0 (8)  

∇⋅B(x) = 0 (9) 

The geometric equations have the following formulations [57] 

S(x) = 1
2
(
∇u(x)+ (∇u(x))T) (10)  

E(x) = − ∇Φ(x) (11)  

H(x) = − ∇Ψ(x) (12) 

Where ∇ is the Nabla operator. S(x), u(x) are the vector of strain and 
displacement,E(x), Φ(x) are the vector of electrical field and electric 
potential. H(x), Ψ(x) are the vectors of magnetic flux and magnetic 
potential. 

3. NS-RPIM 

3.1. Generalized displacement approximation using RPIM 

Since the three-node triangular element is easy to be generated and 
has good adaptability to complex structures, it is used to discretize 
models in this paper [58]. To construct RPIM shape function, selecting 
local support nodes from different layers for interpolation is used by 
cell-based T2L-shceme[39]. 

The approximation w(x) of generalized displacement for FGMEE 
material is [59] 

w(x) =
∑Ns

i=1
Ri(x)ai +

∑3

j=1
pj(x)bj (13)  

where Ri(x), pj(x)denotes multi-quadrics radial basis function (MQ-RBF) 
and PBF [60,61], Ns is the sum of two-layer local support nodes. ai and bj 
are the coefficients related to RBF and PBF but not known, respectively. 

Owing to forcing each local support node to satisfy Eq. (13), we 
obtain 

w = Rma + Pmb (14)  

where Rm and Pm are the moment matrices. 
The constrain conditions are used to guarantee the unique solution to 

the coefficients 

PT
ma = 0 (15) 

Combining Eqs. (14) and (15) 
[

Rm Pm

PT
m 0

]{
a
b

}

=

[
w
0

]

(16) 

Based on Eqs. (13) and (16) 

w(x) = N(x)
[

w
0

]

(17)  

where 

N(x) =
[

RT(x) pT(x)
]
[

Rm Pm

PT
m 0

]− 1

= [N1(x) N2(x) ⋯ NNs+3(x) ]

(18) 

The RPIM shape function is N(x) = [N1(x) N2(x) ⋯ NNs (x) ]. 

3.2. Inhomogeneous node-based GST 

Due to the limitation of low accuracy in dealing with multi-physics 
coupling problems using FEM, a new algorithm be developed to accu-
rately analyze the responses of FGMEE structures. By linking the 
centroid nodes and the mid-edge points around node xi, the node-based 
smoothing domain Ωi is created (Fig. 2). Using RPIM shape functions of 
displacement Nu

i (x), electric potential NΦ
i (x)and magnetic potential 

NΨ
i (x). the displacement function ui(x), electric potential function Φi(x)

and magnetic potential function Ψi(x) are given as 

ui(x) = Nu
i (x)ui(x) (19) 

Fig. 2. Node-based smoothing domain.  
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Φi(x) = NΦ
i (x)Φi(x) (20)  

Ψi(x) = NΨ
i (x)Ψi(x) (21) 

The smoothed strain Si(x), smoothed electrical field intensity Ei(x)
and smoothed magnetic flux density Hi(x) are given as 

Si(x) =
1
Ai

∫

Γi

Lu
nui(x)dΓ =

∑Ns

j=1

[
Bu

i (x)
]

j[ui(x)]j (22)  

Ei(x) =
1
Ai

∫

Γi

LΦ
n Φi(x)dΓ = −

∑Ns

j=1

[
BΦ

i (x)
]

j[Φi(x)]j (23)  

Hi(x) =
1
Ai

∫

Γi

LΨ
n Ψi(x)dΓ = −

∑Ns

j=1

[
BΨ

i (x)
]

j[Ψi(x)]j (24)  

where Ai denotes the area of Ωi and Γi denotes the boundary of Ωi. Lu
n, LΦ

n 

and LΨ
n are the unit normal vector matrices 

Lu
n =

[
nx 0 nz
0 nz nx

]T

,LΦ
n = LΨ

n = [ nx nz ]
T (25) 

[Bu
i (x)]j, [B

Φ
i (x)]j and [BΨ

i (x)]j could be expressed as 

[
Bu

i (x)
]

j =

[
(

bu
jx(x)

)

i
0

(
bu

jz(x)
)

i

0
(

bu
jz(x)

)

i

(
bu

jx(x)
)

i

]T

(26)  

[
BΦ

i (x)
]

j =
[ (

bΦ
jx(x)

)

i

(
bΦ

jz (x)
)

i

]T
,
[
BΨ

i (x)
]

j =
[ (

bΨ
jx(x)

)

i

(
bΨ

jz(x)
)

i

]T

(27) 

Substituting Si(x), Ei(x) and Hi(x) defined in Eqs. (7)–(9) by Eqs. 
(22)–(24), the stiffness matrices for FGMEE structures with N nodes can 
be computed as 

Kuu =
∑N

i=1
Ai
[
Bu

i (x)
]TC(x)

[
Bu

i (x)
]
,KΦΦ =

∑N

i=1
Ai
[
BΦ

i (x)
]T

ε(x)
[
BΦ

i (x)
]

(28)  

KΨΨ =
∑N

i=1
Ai
[
BΨ

i (x)
]T

μ(x)
[
BΨ

i (x)
]
,KuΦ =

∑N

i=1
Ai
[
Bu

i (x)
]Te(x)

[
BΦ

i (x)
]

(29)  

KuΨ =
∑N

i=1
Ai
[
Bu

i (x)
]Tq(x)

[
BΨ

i (x)
]
,KΦΨ =

∑N

i=1
Ai
[
BΦ

i (x)
]T

m(x)
[
BΨ

i (x)
]

(30)  

3.3. ISNS-RPIM 

To guarantee stability and accuracy in solving dynamic problems, 
stable terms need to be introduced into NS-RPIM [42,62]. The stable 
terms are constructed based on Ωi (Fig. 3). Ωi defined as approximate 
domain is closed to a circular region ΩG

i whose area is the same as Ai. 
Then ΩG

i is subdivided to four sub-regions. The radius of the approxi-
mate domain is 

lc =
̅̅̅̅̅̅̅̅̅̅
Ai/π

√
(31) 

Fig. 3. The approximate domain of ISNS-RPIM.  

Table 1 
Material parameters of BaTiO3-CoFe2O4 [25,63].  

Elastic coefficient C-N/m2 

C11 C12 C13 C33 C44 C66 

1.66 ×
1011 

0.77 ×
1011 

0.78 ×
1011 

1.62 ×
1011 

0.43 ×
1011 

0.445 ×
1011  

Piezoelectric coefficient e-C/m2 Piezomagnetic coefficient q-N/Am 
e31 e33 e15 q31 q33 q15 

− 4.4 18.6 11.6 580.3 699.7 550.0  

Dielectric coefficient 
ε-C2/Nm2 

Magneto-electric 
coefficient m-Ns/VC 

Magnetic permeability 
μ-Ns2/C2 

ε11 ε33 m11 m33 μ11 μ33 

1.12 ×
10− 8 

1.26 ×
10− 8 

5.0 ×
10− 12 

3.0 ×
10− 12 

5.0 ×
10− 6 

10.0 ×
10− 6  

Pyroelectric 
coefficient p-C/ 
m2K 

Pyromagnetic 
coefficient τ- C/ 
m2K 

hygroelectric 
coefficient ξ-Cm/ 
kg 

hygromagnetic 
coefficient γ-Nm2/ 
Akg 

p3 τ3 ξ γ 

− 13 × 10− 5 6 × 10− 3 0 0  

Thermal expansion coefficient 
β-K− 1 

Moisture expansion coefficient 
χ-m3/kg 

Density ρ-kg/ 
m3 

β1 = β2 β3 χ2 = χ3 ρ 

14.1 × 10− 6 7.2 × 10− 6 1.1 × 10− 4 5730  

Fig. 4. Meshes and dimensions of the MEE plate.  
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The gradient of u, Φ and Ψ at node xi are 

∇u = ∇ui +
∂(∇u)

∂x
(x − xi) +

∂(∇u)
∂z

(z − zi) (32)  

∇Φ = ∇Φi +
∂(∇Φ)

∂x
(x − xi) +

∂(∇Φ)

∂z
(z − zi) (33)  

∇Ψ = ∇Ψi +
∂(∇Ψ)

∂x
(x − xi) +

∂(∇Ψ)

∂z
(z − zi) (34) 

The gradient items of complementary integration points Gi
k (k=1, 2, 

3, 4) are 

(∇u)i1 = ∇ui + lc⋅∂(∇u) / ∂x, (∇u)i2 = ∇ui + lc⋅∂(∇u) / ∂z (35)  

(∇u)i3 = ∇ui − lc⋅∂(∇u) / ∂x, (∇u)i4 = ∇ui − lc⋅∂(∇u) / ∂z (36)  

(∇Φ)i1 = ∇Φi + lc⋅∂(∇Φ) / ∂x, (∇Φ)i2 = ∇Φi + lc⋅∂(∇Φ) / ∂z (37)  

(∇Φ)i3 = ∇Φi − lc⋅∂(∇Φ) / ∂x, (∇Φ)i4 = ∇Φi − lc⋅∂(∇Φ) / ∂z (38)  

(∇Ψ)i1 = ∇Ψi + lc⋅∂(∇Ψ) / ∂x, (∇Ψ)i2 = ∇Ψi + lc⋅∂(∇Ψ) / ∂z (39)  

(∇Ψ)i3 = ∇Ψi − lc⋅∂(∇Ψ) / ∂x, (∇Ψ)i4 = ∇Ψi − lc⋅∂(∇Ψ) / ∂z (40) 

The modified stiffness matrices are obtained by Eqs. (35)–(40) as 
follow 

Kuu = Kuu + K∗
uu,KΦΦ = KΦΦ + K∗

ΦΦ,KΨΨ = KΨΨ + K∗
ΨΨ, (41)  

KuΦ = KuΦ + K∗
uΦ,KuΨ = KuΨ + K∗

uΨ,KΦΨ = KΦΨ + K∗
ΦΨ, (42)  

K∗
uu =

∑N

i=1

Ai

2

[[
Bu

i

]T
x C(x)

[
Bu

i

]

x +
[
Bu

i

]T
z C(x)

[
Bu

i

]

z

]
(43)  

K∗
uΦ =

∑N

i=1

Ai

2

[[
Bu

i

]T
x e(x)

[
BΦ

i

]

x +
[
Bu

i

]T
z e(x)

[
BΦ

i

]

z

]
(44)  

K∗
uΨ =

∑N

i=1

Ai

2

[[
Bu

i

]T
x q(x)

[
BΨ

i

]

x +
[
Bu

i

]T
z q(x)

[
BΨ

i

]

z

]
(45)  

K∗
ΦΦ =

∑N

i=1

Ai

2

[[
BΦ

i

]T

x ε(x)
[
BΦ

i

]

x +
[
BΦ

i

]T

z ε(x)
[
BΦ

i

]

z

]
(46)  

K∗
ΨΨ =

∑N

i=1

Ai

2

[[
BΨ

i

]T

x μ(x)
[
BΨ

i

]

x +
[
BΨ

i

]T

z μ(x)
[
BΨ

i

]

z

]
(47)  

K∗
ΦΨ =

∑N

i=1

Ai

2

[[
BΦ

i

]T

x m(x)
[
BΨ

i

]

x +
[
BΦ

i

]T

z m(x)
[
BΨ

i

]

z

]
(48) 

The discretized system equations are 

[Kuu]{u} + [KuΦ]{Φ} + [KuΨ]{Ψ} = {Fu} + {FH} + {FT} (49)  

[KΦu]{u} − [KΦΦ]{Φ} − [KΦΨ]{Ψ} = − {Fhe} −
{

Fpe
}

(50)  

[KΨu]{u} − [KΨΦ]{Φ} − [KΨΨ]{Ψ} = − {Fhm} −
{

Fpm
}

(51)  

where {Fu}, {FH} and {FT} are the load vector of mechanical, hygro-
scopic and thermal, respectively. {Fhe}, {Fpe}, {Fhm} and {Fpm} denote 
load vectors of hygroelectric, pyroelectric, hygromagnetic, pyro-
magnetic, respectively. The expressions are 

{FT} =
∑N

i=1
Ai
[
Bu

i (x)
]TC(x)β(x)ΔT, {FH} =

∑N

i=1
Ai
[
Bu

i (x)
]TC(x)χ(x)Δm

(52)  

{
Fpe

}
=

∑N

i=1
Ai
[
BΦ

i (x)
]T

p(x)ΔT,
{

Fpm
}
=

∑N

i=1
Ai
[
BΨ

i (x)
]T

τ(x)ΔT (53)  

{Fhe} =
∑N

i=1
Ai
[
BΦ

i (x)
]T

ξ(x)Δm, {Fhm} =
∑N

i=1
Ai
[
BΨ

i (x)
]T

γ(x)Δm (54) 

For free vibration problems, the right sides of Eqs. (49) to (51) are 
zero, and Eq. (49) is rewritten as 

[M]{ü} + [Kuu]{u} + [KuΦ]{Φ} + [KuΨ]{Ψ} = 0 (55)  

where ü is the acceleration vector, M is the mass matrix. whose ex-
pressions are 

M =
∑

Ne

[diag{m1 m1 m2 m2 m3 m3 }] (56)  

where Ne is the count of elements in the model. 
Using Eqs. (49)–(51) and the condensation method [28], the equiv-

alent stiffness matrix [Keq], equivalent load vector {Feq} and mass ma-
trix [M] satisfy the following equation 
[
Keq

]
{u} =

{
Feq

}
(57) 

Table 2 
Generalized displacement of point B.   

ux (10− 10 m) uz (10− 9 m) Φ (V) Ψ (10− 2A) 

ISNS-RPIM − 6.333170612063460 1.1366757464314900 1.8990980642225400 4.27812431865876 
Analytical Solution − 6.3332000 1.1366760 1.8991000 4.278120  

Table 3 
The efficiency of EFGM, FEM and ISNS-RPIM [64].  

Method CPU time/s Energy error (%) EC 

EFGM 6.004 6.609 × 10− 5 2.52 × 103 

FEM 1.746 3.047 × 10− 4 1.88 × 103 

ISNS-RPIM 16.386 7.223 × 10− 6 8.45 × 103  

Fig. 5. FGMEE clamped-clamped beam.  
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Fig. 6. The generalized displacement on edge AB.  

Fig. 7. FGMEE clamped-clamped beam contours.  
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[
Keq

]
{u} + [M]{ü} = 0, forfreevibrationproblems (58) 

The expression of Φ and Ψ and the condensation technique are 
written as 

{Φ} = − [KII]
− 1{FΦ sol

}
+ [KII]

− 1
[KI]{u} (59)  

[KI] = [KΦu] − [KΨΦ][KΨΨ]
− 1
[KΨu] (60)  

[KII] = [KΦΦ] − [KΨΦ][KΨΨ]
− 1
[KΦΨ] (61)  

{Ψ} = [KΨΨ]
− 1
[KuΨ]

T
{u} − [KΨΨ]

− 1
[KΦΨ]

T
{Φ} − [KΨΨ]

− 1[{Fpm
}
+{Fhm}

]

(62)  

[KIII] = [KII]
− 1
[KI] (63)  

[KIV] = [KII]
− 1
[KΨΦ][KΨΨ] (64)  

[KV] = [Kuu] + [KuΨ][KΨΨ]
− 1
[KΨu] (65)  

[KVI] = [KuΦ] − [KuΨ][KΨΨ]
− 1
[KΦΨ] (66) 

Fig. 8. Natural frequency of the FGMEE clamped-clamped beam with different hygrothermal loading. (a) ΔT = 10 K, Δm = 1%, (b) ΔT = 20 K, Δm = 2%, (c) ΔT = 50 
K, Δm = 3%. 

Fig. 9. Relative error of the FGMEE clamped-clamped beam with different n.  

Fig. 10. (a) Energy error with different n (n=0, 0.2, 0.5) (b) CPU times (c) Efficiency with different n (n=0, 0.2, 0.5).  
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[KVII] = [KV] + [KVI][KIII] (67)  

[KVIII] =
[
Keq

]
= [KVI][KII]

− 1 (68)  

[KIX] = [KuΨ][KΨΨ]
− 1

− [KVI][KIV] (69)  

[
Feq

]
= [KIX]

[{
Fpm

}
+{Fhm}

]
+ [KVIII]

[{
Fpe

}
+{Fhe}

]
+ {Fu} + {FT}

+ {FH}

(70)  

{
FΦ sol

}
=

[{
Fpe

}
+{Fhe}

]
− [KΨΦ]

T
[KΨΨ]

− 1[{Fpm
}
+{Fhm}

]
(71)  

4. Numerical Examples 

FGMEE structures subject to mechanical and hygrothermal loadings 
are studied using ISNS-RPIM in this section. Because of the small vari-
ation in temperature and moisture concentration, the following co-
efficients β, p, τ, χ, ξ and γ are neglected. First, the correctness of ISNS- 
RPIM is validated compared to the analytical solution. Then, several 
examples illustrate the advantages of the algorithm. Finally, the effects 
of exponential factor, hygrothermal loadings and empirical constants on 
the responses of FGMEE structures are analyzed. 

The values of ξ and γ are zero. Table 1 gives the material constants of 
BaTiO3-CoFe2O4. The influence of the empirical constants related to 
temperature and moisture dependency (α*, β*) is considered. The 

Fig. 11. The generalized displacement on edge AB (using distorted mesh).  

Fig. 12. The energy error using distorted mesh.  
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Fig. 13. (a) FGMEE energy harvester (b) Dimensions of the FGMEE energy harvester.  

Fig. 14. The generalized displacement on edge AB (ΔT = 10 K, Δm = 1%).  
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Fig. 15. The generalized displacement on edge AB (ΔT = 40 K, Δm = 3%).  

Fig. 16. The energy error of ISNS-RPIM and FEM.  
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Fig. 17. Contours of the FGMEE sensor (ΔT = 10 K, Δm = 1%).  

Fig. 18. Contours of the FGMEE sensor (ΔT = 40 K, Δm = 3%).  

Fig. 19. (a) FGMEE energy harvester (b) Dimensions of the FGMEE energy harvester.  
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dependent elastic stiffness coefficient C̃ and the independent elastic 
stiffness coefficient C* have the following relationship [28] 

C̃ = C∗ + C∗α∗ΔT + C∗β∗Δm (72) 

The error in total energy norm is introduced to verify the conver-
gence and accuracy of ISNS-RPIM:  

where the expressions of SAn
ij , EAn

i and HAn
i are given as 

SAn
ij = lim

N→∞

∑N

i=1

(
Bi

u

)

ijkuk,EAn
i = lim

N→∞

∑N

i=1

(
Bi

Φ

)

ijΦ,HAn
i = lim

N→∞

∑N

i=1

(
Bi

Ψ

)

ijΨ

(74) 

Demonstrate the efficiency of ISNS-RPIM through the parameter EC 

EC =
1

CPUtime × EnergyError
(75) 

Then, create the irregular meshes (xir, zir) as follow [56]. 

xir = x + rA⋅Δx⋅αir (76)  

zir = z + rA⋅Δz⋅αir (77)  

where αir represents the irregular factor whose value range is 0 to 0.5, rA 
is the arbitrary number, Δx and Δz express the distances of regular nodes 
in the x-direction and z-direction. 

The constraints corresponding to different boundary conditions are: 
Free end: ux = uz = Φ = Ψ ∕= 0. 

Fig. 20. The generalized displacement on edge AB (α* = β* = 0).  

EnergyError=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
2

∫
⎛

⎜
⎝

Cijkl

(
Sij − SAn

ij

)(
Skl − SAn

kl

)
+ εij

(
Ei − EAn

i

)(
Ej − EAn

j

)

+μij

(
Hi − HAn

i

)(
Hj − HAn

j

)

⎞

⎟
⎠dΩ

√
√
√
√
√
√ (73)   
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Fig. 21. The generalized displacement on edge AB (α* = β* = − 0.05).  

Fig. 22. Energy error.  
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Bottom edge: Φ = Ψ = 0. 
Clamped end: ux = uz = 0. 

4.1. MEE plate 

The developed method is used to study the generalized displacement 
for a BaTiO3-CoFe2O4 in-plane plate to verify the correctness of ISNS- 
RPIM. Fig. 4 shows the meshes and dimensions of the structure 

subjected to a uniform load F (upward) at the upper edge, F= 100 N/m. 
The exponential factor is 0. The mechanical, electric and magnetic 
boundary conditions considered in the present work are: 

ux = 0 at z = -1 (AD) 
uz = Φ = Ψ = 0 at x = -1 (CD) 
Results at point B (1m, 1m) are given in Table 2. It can be observed 

that ISNS-RPIM displays a close agreement with the results of Zhu et al. 
[63]. Hence, ISNS-RPIM could produce sufficiently reliable results for 

Fig. 23. FGMEE energy harvester Contours (α* = β* = 0).  

Fig. 24. FGMEE energy harvester contours (α* = β* = − 0.05).  
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HMEE coupling problems. The formulation could be extended to analyze 
other structures with complex geometries, boundary conditions and 
loadings. 

In the subsequent section, select the calculation results of FEM as the 
reference solution to further prove the advantages of ISNS-RPIM in 
solving HMEE coupling problems. 

Table 3 shows the comparison of CPU time and error under different 
numerical methods. We compared the conclusion of ISNS-RPIM program 
with an existing reference solution element free Galerkin method 
(EFGM) [64]. It can be seen from Table 3 that the calculation efficiency 
of ISNS-RPIM is higher than FEM and EFGM, which proves the accuracy 
and high efficiency of ISNS-RPIM. 

4.2. FGMEE beam 

The static responses and free vibration for FGMEE clamped-clamped 
beam subject to hygrothermal loadings are researched in this section. 
The beam with length L = 0.1 m and width W = 0.01 m is shown in 
Fig. 5. The empirical constants are α* = β* = − 0.01. 

4.2.1. Static and dynamic analysis for FGMEE beam 
The exponential factor n is taken as 0, 0.2, 0.5. ISNS-RPIM uses 

triangular elements (427 nodes), and the calculation results as a refer-
ence using FEM based on quadrilateral elements (2737 nodes). Fig. 6 
shows the generalized displacement on edge AB of the geometry, and 
Fig. 7 exhibits the contours of the whole mode. The variation of tem-
perature and moisture are ΔT = 50 K and Δm = 1%, respectively. It can 
be observed that under the same hygrothermal loading and n, with the 
increase of n, values of ux and Φ decrease and values of uz and Ψ 
increases. 

The same meshes are applied to solve the free vibration problem. 
Results are given in Fig. 8, the loadings are ΔT = 10 K, Δm = 1% and ΔT 
= 20 K, Δm = 2% and ΔT = 50 K, Δm = 3%, the exponential factors are 
n = 0, 0.2, 0.5. It is obvious that, because of the existence of empirical 
constants affects the elastic stiffness coefficient, the natural frequency of 
the model decreases when the loading gradually increases. Where α* 
and β* are negative, the elastic stiffness coefficient and the model 
stiffness decrease due to the increase in ΔT and Δm. Fig. 9 shows the 
relative error values of the free vibration problem between different 
algorithms and reference solutions. The relative error of ISNS-RPIM is 
smaller than other algorithms including NS-RPIM and FEM. In addition, 
the figures reveal that NS-RPIM is inaccurate in solving the free vibra-
tion problem due to the temporal instability, which is far from the 
reference solution. Therefore, ISNS-RPIM has extremely high accuracy 
when solving statics and free vibration problems of FGMEE structures. 

4.2.2. Energy error and efficiency study 
The energy error, CPU time and efficiency are shown in Fig. 10 with 

different algorithms including ISNS-RPIM, NS-RPIM and FEM. ΔT = 10 
K, Δm = 1% and ΔT = 20 K, Δm = 2% are the hygrothermal loadings, n 
= 0, 0.2, 0.5 are the exponential factors. 63, 205, 427 and 729 nodes 

were used for calculation. The expression of h is h =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

4A/
̅̅̅
3

√√

, which 

represents the characteristic length. A is the mean size of the element. 
The smaller the h, the more nodes are required for the computation. It is 
evident that the error decreases as h decreases, which illustrates the 
convergence of ISNS-RPIM. The errors of ISNS-RPIM are the smallest 
under any loadings and exponential factor. In terms of CPU time, NS- 
RPIM has longer calculation time than FEM due to the smoothing 
operation. ISNS-RPIM is based on NS-RPIM, and it also needs to calcu-
late the stable terms, thus ISNS-RPIM takes the longest time to calculate 
the same problem. 

EC is an indicator describing the efficiency of the algorithm. ISNS- 
RPIM with 63 nodes is not the most efficient one. However, in other 
cases, ISNS-RPIM has higher efficiency. In process of solving practical 
engineering problems, the requirements for accuracy and efficiency are 

very high. ISNS-RPIM could combine high accuracy with high efficiency. 
Therefore, ISNS-RPIM is an algorithm suitable for solving practical 
HMEE coupling problems. 

4.2.3. Mesh distortion effect 
The influence of irregular factor αir on ISNS-RPIM is researched. Ten 

irregular factors are considered, αir = 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 
0.35, 0.4, 0.45, 0.5, the larger the αir, the more irregular the meshes. Run 
the process ten times to obtain ten sets of generalized displacement. 
Then take the average of these ten groups of results and draw the curves 
on edge AB (Fig. 11) and calculate the errors (Fig. 12). A total of 245 
nodes are used for calculation, two sets of hygrothermal loadings are 
considered, ΔT = 10 K, Δm =1% and ΔT = 20 K, Δm = 2%. When 
αir>0.3, Jacobian matrix could obtain negative determination, which 
reduces the accuracy of FEM [46]. It can be seen from the results that 
ISNS-RPIM is the algorithm with the best agreement with the reference 
solution, which possesses the lowest error. There are no Jacobian matrix 
and coordinate transformation needed in the calculation process of 
ISNS-RPIM, thus, the ISNS-RPIM is insensitive to distorted mesh. 

4.3. Static responses of FGMEE sensor using ISNS-RPIM 

After verifying the superiority of ISNS-RPIM, the HMEE coupling 
problems of complex FGMEE structures are analyzed, empirical con-
stants and exponential factor are also taken into consideration to explore 
the impact on the results. 

4.3.1. Influence of ΔT and Δm 
In Fig. 13, consider a FGMEE sensor with fully clamped on left and 

right sides. ISNS-RPIM and FEM use triangular elements (570 nodes), 
and the reference solution uses quadrilateral meshes with a much denser 
mesh (2060 nodes). In this section, two hygrothermal loadings are 
considered: ΔT = 10 K, Δm = 1% and ΔT = 40 K, Δm = 3%. The 
empirical constants are α* = β* = − 0.02, Consider the case where the 
exponential factor n is 0, 0.2, 0.5. 

Figs. 14 and 15 display the ux, uz, Φ, Ψ on edge AB, Fig. 16. exhibits 
the energy errors. The contours of the FGMEE sensor under different 
hygrothermal loadings and exponential factors are shown in Figs. 17 and 
18. It can be seen that when the values of α*, β* and n remain un-
changed, the increases in ΔT and Δm result in the increase of the 
generalized displacement. ΔT and Δm increase, the structural stiffness 
decreases. In addition, Φ and Ψ are greatly affected by n. As n increases, 
the absolute values of ux, Φ and Ψ decrease, those of uz increases. Ac-
cording to Eq. (5), it can be seen that when n>0, the stiffness of the 
structure increases, when the hygrothermal loading is kept constant, the 
displacement decreases. The form of the structure has an effect on the 
local displacement. The form of the structure has an effect on the local 
displacement. 

It is clear that ISNS-RPIM is the most accurate one, whose results fit 
well with reference solutions, which proves again the correctness of 
ISNS-RPIM. 

4.3.2. Effective of empirical constants α* and β* 
Next, we consider a FGMEE energy harvester with four semicircular 

holes at the bottom edge, left and right edges are both clamped in 
Fig. 19. In this section, ΔT = 10 K, Δm = 1%. α* = β* = 0 and α* = β* 
=− 0.05 are the empirical constants, n = 0, 0.2, 0.5 are the exponential 
factor. ISNS-RPIM and FEM use triangular elements (416 nodes), the 
results as a reference based on quadrilateral meshes with a much denser 
mesh (1476 nodes). 

Figs. 20 and 21 exhibit the generalized displacement on edge AB. 
Fig. 22 is the energy error of two algorithms. The contours of the FGMEE 
energy harvester are given in Figs. 23 and 24. When ΔT, Δm and n do not 
change, the decrease of empirical constants leads to the decrease of 
structural stiffness. Therefore, values of ux and uz both increase, which is 
consistent with Eq. (50). Meanwhile, Φ and Ψ decrease. It can also be 
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seen that Φ and Ψ are greatly affected by n. As n increases, the value of Φ 
decreases and the value of Ψ increases. The displacement is less affected 
by n, which decreases as n increases. 

It is obvious that the error of ISNS-RPIM is the lowest, indicating that 
the developed method is feasible and valid in tackling complex FGMEE 
structures in hygrothermal environment. 

5. Conclusion 

The ISNS-RPIM is presented to explore FGMEE structures. The stable 
terms related to field variables are employed to improve the temporal 
stability of NS-RPIM. The factors influencing structural static responses 
and natural frequency are investigated in detail: exponential factor and 
hygrothermal loadings. Results show that increasing the empirical 
constants decreased the structural stiffness and the natural frequency. 
For exponential factors, ux, Φ decrease and Ψ increases, as the expo-
nential factor increase. In addition, Φ and Ψ are greatly affected by the 
exponential factor. Finally, the results also show the advantages of high 
precision, high effectiveness, and insensitivity to mesh distortion in 
ISNS-RPIM, which verifies the robustness of ISNS-RPIM and shows the 
potential of the algorithm in solving practical complex problems. (Eqs. 
(1)–(4), (8), (10)–(12), (17)–(21), (23), (25)–(48), (52)–(77)) 
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