文章编号: 1672-8785(2023)05-0015-09

多重差分滤波航空图像检焦法的 滤波器参数选取

康 琦¹ 马洪涛^{1*} 赵 宇¹ 韩 冰¹ 张鹏宇² 王海江³
 (1.中国科学院长春光学精密机械与物理研究所,吉林 长春 130033;
 2.长春精测光电技术有限公司,吉林 长春 130012;
 3.小米通讯技术有限公司,北京 100089)

摘 要:针对多重差分航空相机图像检焦精度的问题,提出了一种多重差分空 间滤波器参数选取方法。首先,介绍了空间滤波法以及基于空间滤波效应的自 动检焦。然后阐述了多重差分滤波检焦法的具体实施过程,并从滤波器输出信 号功率谱角度分析了滤波器参数的选取与检焦精度、灵敏度的关系。最后设计 动态成像实验,在典型导轨移速 53.2 mm/s 下采集外景图像,选取不同的滤波 器参数分别进行 20 次像面检测,并将其结果与传统图像检焦算子的检焦效果进 行比较。结果表明,本文方法选取的参数使得检焦精度比 Brenner 算法提高了 18%,且检焦系统的最大误差为 33.92 μm,小于光学系统允许误差(76.8 μm), 满足实际工作需求。

关键词:光学成像系统;航空相机;焦面检测;空间滤波器参数

中图分类号: V216.7 文献标志码: A DOI: 10.3969/j.issn.1672-8785.2023.05.003

Selection of Filter Parameters of Aerial Image Focusing Method Based on Multiple Difference Filtering

KANG Qi¹, MA Hong-tao^{1*}, ZHAO Yu¹, HAN Bing¹, ZHANG Peng-yu², WANG Hai-jiang³

(1. Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China;
 2. Changchun Jingce Photoelectric Technology Co., Ltd., Changchun 130012, China;
 3. Xiaomi Communication Technology Co., Ltd., Beijing 100089, China)

Abstract: Aiming at the problem of multi-difference aerial camera image detection accuracy, a multidifference spatial filter parameter selection method is proposed. Firstly, the spatial filtering method and the automatic focusing based on the spatial filtering effect are introduced. Secondly, the implementation process of multi-difference filter focusing method is introduced, and the relationship between the selection of filter parameters and the focusing accuracy as well as the sensitivity is analyzed from the view of the

收稿日期: 2023-01-15

作者简介:康琦(1996-),女,黑龙江大庆人,研究实习员,硕士,主要从事航空遥感跟踪与测量方面 的研究。

*通讯作者: E-mail: 3021149074@qq.com

power spectrum of filter output signal. Finally, the dynamic imaging experiment is designed, and the location images are collected under the typical guide speed of 53 2mm/s. Different filter parameters are selected to detect the image plane for 20 times, and the focusing effect is compared with that of the traditional image-focusing operator. The results show that the parameters selected by the multi-difference filtering method in this paper improve the focusing accuracy by 18% compared with the Brenner algorithm. And the maximum error of the focusing system is 33 92 μ m, less than the allowable error of the optical system (76 8 μ m), which meets the practical requirements.

Key words: optical imaging system; aerial camera; focal plane detection; filter parameters

0 引言

航空相机是一种可对地面景物成像的光学 载荷,被广泛用于林业、农业、资源勘察、军 事侦察等多个领域^[1-3]。日新月异的科学技术 使得人们对航空相机的成像清晰度也提出了较 高的要求。在实际成像过程中,成像距离、大 气压力以及环境温度的变化均会造成航空相机 探测器感光面的实际位置与理想焦面位置发生 偏离(即离焦)^[4],导致成像质量下降。因此, 如何设计一种实时性强、精度高的自动检调焦 方法来保证航空相机的高分辨率、高清晰度成 像,成为了航空遥感领域的重要课题。

随着图像处理技术的快速发展,图像处理 检焦法逐渐成为现阶段国内外最理想的检调焦 方法之一^[5]。但常用的图像处理检焦法普遍需 要对同一目标进行重复成像,不适用于运动中 的航空相机检调焦^[6-7]。本文采用的多重差分 滤波图像检焦法,将滤波器对目标景物图像进 行隔行采样后输出的调制信号作为检焦算子, 不依赖图像中的具体景物内容,无需对相同景 物重复成像^[5],可满足运动中的航空相机检调 焦的需求。

根据空间滤波效应检焦原理可知,检焦精 度与滤波器的滤波特性相关。而影响滤波特性 的参数主要有滤波器窗口形状、透射函数、狭 缝长度、空间周期、狭缝个数等。在利用多重 差分滤波航空图像检焦方法进行检焦时,通过 调整图像隔行采样次数、行数以及采样范围等 即可改变滤波器参数。本文则针对多重差分滤 波航空相机图像检焦方法的滤波器参数选取问 题,从滤波器输出信号功率谱的角度分析了滤 波器参数与检焦精度、灵敏度以及实时性之间 的关系,提出了一组适用于多重差分滤波航空 图像检焦的滤波器参数,提高了检焦精度与灵 敏度。

1 空间滤波效应自动检焦原理

空间滤波法最初常用于测速,可将速度测 量转换为实现难度较小的频率测量。透射光栅 是一种常见的矩形空间滤波器。来自运动目标 的光透过光栅时,空间滤波器即可对图像中的 某一频率成分进行检取与选择^[8-9],最终得到 图1所示的滤波器输出信号。功率谱 *G_P*(μ, υ)为

$$G_P(\mu, v) = F_P(\mu, v) H_P(\mu, v)$$
(1)

式中, $F_P(\mu, v)$ 是运动图像的功率谱, $H_P(\mu, v)$ 是空间滤波器透射函数功率谱,即 $H_P(\mu, v)$ 进行滤波。 $H_P(\mu, v)$ 的中心频率 在 μ_0 处,且 $G_P(\mu, v)$ 是将 $H_P(\mu, v)$ 的中心频率 在 μ_0 处,且 $G_P(\mu, v)$ 是将 $H_P(\mu, v)$ 和 $F_P(\mu, v)$ 进行频谱混叠后得到的。因此, $G_P(\mu, v)$ 的 特征主要由 $H_P(\mu, v)$ 决定,故 $G_P(f)$ 在 $f=f_0$ = μ_0 处也存在尖峰。运动目标的速度计算公式 为 $v=p \cdot f$,其中p为滤波器周期。由图 1 可 知,空间滤波器对特定频率成分具有检取作 用,因此利用 $G_P(f)$ 的中心频率 f_0 以及滤波 器周期p即可计算目标的移速,即空间滤波测 速法^[10-11]。

由图像处理原理可知,航空相机离焦会导 致图像清晰度下降^[12]、尺寸变大,图像中高 频成分含量减小;而相机合焦时,图像清晰度 高且尺寸小,图像中高频成分含量最大^[13-14]。 空间滤波器可以检取 *f* = *f*₀ = *µ*₀ 附近的高频成 分。高频对应着滤波器时域信号中的交流成

图1 滤波器输出信号的功率谱函数

分,而在基频 μ=0 处检取到的低频则与时域 信号中的直流成分对应。因此,当相机离焦 时,滤波器输出信号的交流成分与直流成分之 比减小,且相机离焦量越大,减小幅度越明 显。反之,当相机合焦时,交流成分与直流成 分之比达到最大。因此,可用滤波器输出信号 中交流成分与直流成分之比作为检焦算子来判 断相机的离焦程度。

然而,滤波器输出信号会受到滤波器与图 像之间相对位移的影响而呈正弦形式。该正弦 变化的频率代表图像与滤波器间的相对移速, 可用于速度测量。但对于相机检焦来说,正弦 形式会使滤波器输出较小。即使目标图像本身 含有较多高频成分,最终还是无法有效区分像 面位置,导致检焦精度下降^[16]。而本文采用 的多重差分检焦法则可消除正弦效应,提高输 出信号幅值与信噪比,使得焦面位置易于区 分,从而提高检焦精度。

2 多重差分滤波检焦法的参数选取

2.1 多重差分滤波检焦法的具体操作

多重差分滤波检焦法的具体操作如图 2 所 示。其中每个小方框表示一个像素。当 CCD 相机处于成像位置 1 时,从输出图像的第一行 开始,将 w 行灰度值累加得到 a_1 ;隔 w 行将 下一个宽度为 w 的灰度值累加得到 b_1 。以此 类推,灰度值经过 n 次隔行累加后可得到 $a_1 \sim a_n$ 、 $b_1 \sim b_n$ 、 $c_1 \sim c_n$ 和 $d_1 \sim d_n$ 。将上述灰度值 分别进行求和,即

$$A = \sum_{1}^{n} a_{n} \tag{2}$$

$$B = \sum_{1}^{n} b_{n}$$
 (3)

$$C = \sum_{i=1}^{n} c_n \tag{4}$$

$$D = \sum_{1}^{n} d_{n} \tag{5}$$

上述过程是滤波器对图像的第一次采样,滤波 器的输出信号为

$$S_{\rm ol} = \sqrt{(A - C)^2 + (B - D)^2} \tag{6}$$

再从同一幅图像的第二行开始,按照上述方法 对灰度值累加,得到 S_{02} 。以此类推,所有采 样结束后得到 $S_{01} \sim S_{0n}$ 共n个采样值。则 CCD 相机在成像位置1处的滤波器输出信号为上述 n个采样值的均方根:

$$I_{OP1} = \sqrt{\frac{1}{n} \sum_{1}^{n} S_{on}^2} \tag{7}$$

之后 CCD 相机处在像面位置 2。此时用同样方 法对采集到的图像进行隔行采样,得到相应的 滤波器输出信号 *I*_{OP2}。以此类推,所有像面位 置采样结束后,得到滤波器输出信号 *I*_{OP1} ~ *I*_{OPM}。当像面处于理想焦面位置时,相应的滤 波器输出信号最大。控制焦面驱动至该位置, 即完成航空相机检调焦。

2.2 滤波器参数选择对检焦精度的影响

根据前文以及文献[5]中关于空间滤波效 应检焦原理的分析可知,航空相机检焦精度会 受到滤波特性的影响,而影响滤波特性的参数 包括滤波器窗口形状、滤波器透射函数、狭缝 长度、狭缝个数、空间周期。

2.2.1 滤波器窗口形状

滤波器窗口形状可分为矩形、圆形、高斯 加权三种。根据文献[9]对滤波器功率谱以及 滤波特性的分析可知,矩形、圆形、高斯加权 滤波器均可用于焦面检测。其中,矩形与圆形 窗口用于检焦时,检焦精度基本一致;高斯加 权滤波器的检焦效果较好。但矩形滤波器可通 过调整参数(如狭缝个数等)来提高检焦精度, 且矩形窗口的实现难度最小、操作简单。因 此,本文的多重差分检焦法采用矩形窗口滤 波器。

图 4 正弦、矩形透射函数

2.2.2 透射函数

滤波器透射函数包括正弦透射函数和矩形 透射函数(见图 4)。正弦、矩形透射函数功率 谱表达式为

$$H_{11}(\mu)|^{2} = \left(\frac{\sin \pi \mu p}{\pi \mu p}\right)^{2} \left[\frac{1}{2(1-\mu^{2}p^{2})}\right]^{2}$$
(8)

$$|H_{12}(\mu)|^{2} = (\frac{\sin \pi \mu p}{\pi \mu p})^{2}$$
(9)

图 5 正弦、矩形透射函数功率谱

式中, w 为透光矩形的宽度。

正弦、矩形透射函数功率谱波形如图 5 所 示。它们均具有低通滤波特性,且滤波特性无 明显差异。在实际应用中,矩形透射函数比正 弦透射函数操作简单且更容易实现,因此多采 用矩形透射函数。

223 狭缝长度

矩形滤波器的透射函数为 h(x, y)。为便 于计算,取 h(y)=1,则空间滤波器透射函数 h(x)如图 6 所示。其中,L 为狭缝长度,n 为 狭缝数量,b 为透光矩形宽度,p 为滤波器空 间周期且 p=2b。

图 6 矩形滤波器透射函数

矩形滤波器透射函数的表达式为

$$h(x) = \begin{cases} 1, \ 2nb < x \le (2n+1)b \\ 0, \ (2n+1)b < x \le (2n+2)b \end{cases}$$
(10)

对式(10)进行傅里叶变换:

$$H(\mu, v) = \iint h(x, y) e^{\left[-2j\pi(\mu x + vy)\right]} dxdy$$

= $\frac{1 - e^{-2\pi j\mu b}}{2j\mu\pi} \times \frac{1 - e^{-2\pi jvL}}{2jv\pi} \times \frac{1 - e^{-4\pi j\mu b}}{1 - e^{-4\pi j\mu b}}$
= $\frac{\sin \pi v L \sin 2n\pi \mu b}{4\pi^2 \mu v \cos(\pi \mu b)} \times e^{-j\pi \left[vL + \mu b(2n-1)\right]}$ (11)

则矩形滤波器的功率谱密度函数为

$$|H(\mu, v)|^2 = A^2 |H_L(v)|^2 |H_{n,b}(\mu)|^2 \quad (12)$$

其中,

$$A^2 = (Lnb)^2 \tag{13}$$

$$|H_L(v)|^2 = (\frac{\sin Lv\pi}{2Lv\pi})^2 \qquad (14)$$

$$|H_{n,b}(\mu)|^2 = \left(\frac{\sin 2\pi n b\mu}{2\pi n b\mu \cos \pi \mu b}\right)^2 \qquad (15)$$

由式(12)可知,滤波器狭缝长度L与输出 信号的振幅成正比。输出信号振幅越大,滤波 器信号的提取就越容易,同时信噪比提高,抵 抗噪声的能力增强。但若L过大,滤波效果则 会有所下降,同时运算的数据量增加,最终会 对检焦的实时性产生影响。由实际应用情况可 知,若要达到检焦精度和实时性的平衡,L-般取值为 8~14 mm。

224 狭缝个数

由 2 2 1 节与 2 2 2 节中的分析可知,本 文最终选用基于矩形透射函数的矩形滤波器进 行多重差分检焦。狭缝个数 *n* 的定义如下:

$$n = \frac{X}{p} \tag{16}$$

式中,*X*为矩形滤波器的窗口总长,*p*为滤波器的空间周期。

图 7 所示为滤波器功率谱密度与狭缝个数 n 的关系。当狭缝个数 n < 10 时,频谱带宽较 宽;而狭缝个数 $n \ge 10$ 时,中心频率 $\mu = 1/p$ 处检取的高频成分的频谱带宽较小。频谱带宽 过宽会导致高频成分与零频处基频的混叠现象 以及中心频率的偏移。此时,滤波器对高频成 分的选择性变差,检焦精度降低。当 $n \ge 10$ 时,中心频率的偏移量能控制在 1% 以内,可 以忽略不计。因此,狭缝个数 $n - \theta$ 取值 较大。

图 7 不同狭缝个数 n 所对应的矩形滤波器透射函数功率谱

2.2.5 空间周期

由图 6 可得 p=2b。若要求取滤波器的最 佳滤波特性,应将式(12)中的 $|H_{n,b}(\mu)|^2$ 对 b求偏导并使偏导数学式等于 0,即

$$\frac{\partial |H_n, b(\mu)|^2}{\partial b} = \frac{\partial \frac{(\sin 2\pi n b \mu)^2}{2\pi n b \mu \cos \pi \mu b}}{\partial b} = 0 (17)$$

则

20

$$\sin 2n\pi \mu b = 0 \tag{18}$$

 $2n\cos 2n\pi\mu \cos \pi\mu + \sin 2n\pi\mu \sin \pi\mu = 0$ (19) 式(19)没有唯一解,故只对式(18)进行讨论。 由于 *n* 为整数,则

$$2\pi\mu b = k\pi \ (k = 0, 1, 2\dots) \tag{20}$$

即

$$\mu = \frac{k\pi}{2\pi b} = \frac{k}{p} (k = 0, 1, 2\dots)$$
(21)

当利用空间滤波效应完成航空相机的检焦 工作时,其中心频率μ偏大一些较好。由式 (21)可知,中心频率μ与狭缝的空间周期 *p* 成 反比。因此,若μ取值偏大一些,则空间周期 *p* 应取偏小一些的值。在航空相机焦面检取过 程中,通过对采集图像动态采样来模拟和计算 出 CCD 空间滤波器的输出信号。模拟过程中 的采样频率就是 CCD 的行频。根据香农采样 定理以及对空间滤波法测速的数学分析可知, 要使采样信号在不失真的情况下完整保留原信 号的信息,则采样频率与目标图像像移速度的 关系为

$$f_s \geqslant 2f_c = 2\frac{v}{b} = 4\frac{v}{p} \tag{22}$$

式中, f, 为 CCD 行转移频率, v 为目标图像 像移速度。由此可见,空间滤波器狭缝周期 p 的选择与成像过程中图像像移速度的最大值以 及给定的 CCD 行转移频率相关。

3 实验结果与分析

设计动态成像实验对 2 2 1~2 2 5 节中 描述的滤波器参数与检焦精度、实时性的关系 进行验证。成像实验装置如图 8 所示。将镜 头、CCD 相机、导轨固定在转台上,使转台 带动镜头与 CCD 相机转动,即可模拟航空相 机工作时的对地成像过程。通过改变 CCD 相 机在导轨上的位置,可以模拟航空相机在对地 成像过程中的离焦现象。转台转速为 0.04 rad/s;镜头为 PENTAX 宾得镜头,焦距为 200 mm, F 数为 8; CCD 相机为 DALSA 公司 的 ZET 相机,像元尺寸为 8 μ m。

光学系统半焦深为

$$\Delta = 2F^2\lambda \tag{23}$$

式中,入射光波长 λ =0.6 μ m,镜头 *F*数为 8, 可得光学系统半焦深为 76.8 μ m。为确保检焦 结果的准确度,每次检焦的步距应小于半焦 深^[3,5]。故此次动态成像实验中,CCD 相机在 理想焦面前后共 400 μ m 的范围内移动(步长为

图 8 外景成像实验

A DESCRIPTION OF THE REAL PROPERTY OF THE REAL PROP ------INTERN TAR BIN SINTERINIAN MIN THE STREET STREET INCOME AND ADDRESS OF DESCRIPTION AND ADDRESS OF DESCRIPTION ADDRESS OF DESCRIPTON ADDRESS OF DESCRIPTION ADDRESS A prevent no taxanimentary propagate and a provent of taxanimentary propagation of a prevent of taxanimentary of 1 11 11 11 11 1 EL 11 -

图 9 外景图像

40 μm), 共可采集 11 幅外景图像。图 9 所示 为采集到的一部分外景图像序列。

选取以下两组多重差分滤波器参数: (1) n=6, p=0.24 mm, L=4.8 mm; (2) n=12, p=0.16 mm, L=6.4 mm。对采集到的 11 幅 外景图像按照 2.1 节中的方法进行采样。在 MATLAB 中仿真即可得到图 10 所示的多重差 分滤波器时域输出信号。从中可以看出,随着 空间滤波器狭缝周期的减小以及狭缝数量的增 加,时域输出信号的频率特性变好,检焦准确 度提高。

选取上述两组滤波器参数,分别采用多重 差分滤波检焦法对采集到的外景图像进行检 焦,并将其结果与传统图像检焦法 Brenner、 Roberts 的检焦效果进行对比,得到图 11 所示 的检焦曲线。 图 11 中的横坐标是外景图像序列,纵坐标则是将检焦算子进行归一化后得到的检焦函数值。可以看出,与传统图像检焦算法 Roberts、Brenner 相比,当n=12、p=0.16 mm、L=6.4 mm时,本文的多重差分检焦算法对离焦量的变化最敏感,检焦灵敏度最高。

此外,为验证多重差分检焦算法的滤波器 参数选取对实际飞行过程中重复性精度的影 响,在 53.2 mm/s 的典型像移速度下采集 20 组模糊图像序列,然后选取上述 2 种滤波器参 数,并采用上述 3 种方法进行检焦。将 20 次 实验的离焦量结果的均方根误差作为检焦精度 (见表 1)。

由表 1 可知, 当 n=12、p=0.16 mm、L =6.4 mm时,检焦精度比取另一组参数时提 高 26%;与传统图像检焦算法 Brenner 相比,

图 10 滤波器时域输出信号:(a)n=6,p=0.24 mm,L=4.8 mm;(b) n=12,p=0.16 mm,L=6.4 mm

p=0.16 mm, L=6.4 mm

22

表1 检焦精度对比

滤波器参数	不同检焦算法的检焦精度		
	多重差分方法	Brenner 方法	Roberts 方法
n=6, p=0.24 mm, L=4.8 mm	45. 78 μm	41. 61 µm	47. 59 μm
n=12, p=0.16 mm, L=6.4 mm	33. 92 μm	41. 37 µm	47. 36 μm

检焦精度提高了 18%。该结果与 MATLAB 仿 真数据一致。因此,为了兼顾检焦精度、灵敏 度以及实时性,最终选择 n=12、p=0.16mm、L=6.4 mm 作为多重差分检焦法的滤波 器参数。结果表明,该方法的检焦精度为 33.92μ m,小于光学系统半焦深(76.8 μ m), 满足工程需求。

4 结束语

本文基于多重差分滤波检焦法研究了滤波 器关键参数的选取对检焦精度的影响,并提出 了一种适用于多重差分检焦的滤波器参数选择 方法。设计了动态成像实验:在 53.2 mm/s 的 典型导轨移速下采集外景图像,并采用不同滤 波器参数的多重差分检焦法以及传统图像检焦 算法 Brenner、Roberts 分别进行 20 次焦面检 测。实验结果表明,当 n=12、p=0.16 mm、 L=6.4 mm 时,多重差分检焦算法灵敏度高 且重复性精度比 Brenner 算法提高了 18%; 检 测精度比 n=6、p=0.24 mm、L=4.8 mm 时 提高了 26%; 检焦误差为 33.92μ m,小于光 学系统检焦最大允许误差(76.8μ m),满足工 程需求。在后续研究中,还应继续提高空间滤 波法的焦面检测精度,并不断累积统计大数据 和优化算法,从而实现航空相机的高精度、实 时性检调焦。

参考文献

- Meng X, Feng H J, Xu Z H. Autofocus method for scanning remote sensing cameras [J]. *Applied Optics*, 2019, 54(20): 6351–6359.
- [2] 卢振华,郭永飞,李洪法,等.利用 LSF 实现推 扫式遥感相机的自动调焦 [J]. 红外与激光工 程,2012,41(7):1808-1814.
- [3] Park B K, Kim S, Chung D S, et al. Fast and accurate auto focusing algorithm based on two defocused images using discrete cosine transform [C]. SPIE, 2008, 6817: 68170D.
- [4] 伞兵,李景林.大口径反射光学系统调焦机构 设计 [J]. 红外与激光工程,2013,42(S2): 329-332.
- [5] 王海江.基于空间滤波效应的航空相机图像检 调焦系统研究[D].长春:中国科学院长春光 学精密机械与物理研究所,2022.
- [6] 邓玉辉, 孙光才. 一种新的高分辨 SAR 自聚焦

- [7] 李启辉,丁亚林,修吉宏,等.一种基于图像处 理的自准直检焦方法 [J]. 激光与光电子学进 展,2020,57(2):213-219.
- [8] 郑丽娜,李延伟,远国勤,等. Visibility 的航空
 遥感相机自动焦面检测方法 [J]. 红外与激光
 工程, 2019, 48(4): 236-241.
- [9] 康琦. 基于空间滤波效应的航空相机自动检调 焦系统研究 [D]. 长春:中国科学院长春光学 精密机械与物理研究所, 2021.
- [10] Sun Y B, Zhang J M, Chen S S, et al. Signal processing for extracting velocity information from spatial filtering signals [C]. Chongqing: 2020 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery, 2020.
- [11] Ding Z G, Wang Z W, Wei Y K, et al. SPA-GAN: SAR Parametric Autofocusing Method with Generative Adversarial Network [J]. *Remote* Sensing, 2022, 14(20): 5159.
- [12] 刘纪洲,宫宸,崔跃刚,等.一种基于角点检测的实时自动对焦方法及实现[J].红外,2022, 43(6):20-26.
- [13] 路朋罗. 基于图像处理技术的自动调焦方法研究[D]. 长春:中国科学院长春光学精密机械 与物理研究所,2016.
- [14] 孟繁浩,丁亚林,王德江,等.像移对长焦距高 分辨率航空相机检调焦精度影响的分析 [J].
 光学学报,2015,35(6):73-80.
- [15] 孟繁浩. 基于图像处理的自动检焦技术在航空 相机中的应用研究 [D]. 长春. 中国科学院长 春光学精密机械与物理研究所, 2016.
- [16] 邹雨彤. 光学成像系统中的自动检焦技术研究 [D]. 成都:中国科学院光电技术研究所, 2021.