Changchun Institute of Optics,Fine Mechanics and Physics,CAS
A Multibranch Crossover Feature Attention Network for Hyperspectral Image Classification | |
D. X. Liu; Y. R. Wang; P. X. Liu; Q. Q. Li; H. Yang; D. B. Chen; Z. C. Liu and G. L. Han | |
2022 | |
发表期刊 | Remote Sensing
![]() |
卷号 | 14期号:22页码:19 |
摘要 | Recently, hyperspectral image (HSI) classification methods based on convolutional neural networks (CNN) have shown impressive performance. However, HSI classification still faces two challenging problems: the first challenge is that most existing classification approaches only focus on exploiting the fixed-scale convolutional kernels to extract spectral-spatial features, which leads to underutilization of information; the second challenge is that HSI contains a large amount of redundant information and noise, to a certain extent, which influences the classification performance of CNN. In order to tackle the above problems, this article proposes a multibranch crossover feature attention network (MCFANet) for HSI classification. The MCFANet involves two primary submodules: a cross feature extraction module (CFEM) and rearranged attention module (RAM). The former is devised to capture joint spectral-spatial features at different convolutional layers, scales and branches, which can increase the diversity and complementarity of spectral-spatial features, while the latter is constructed to spontaneously concentrate on recalibrating spatial-wise and spectral-wise feature responses, meanwhile exploit the shifted cascade operation to rearrange the obtained attention-enhanced features to dispel redundant information and noise, and thus, boost the classification performance. Compared with the state-of-the-art classification methods, massive experiments on four benchmark datasets demonstrate the meliority of our presented method. |
DOI | 10.3390/rs14225778 |
URL | 查看原文 |
收录类别 | sci ; ei |
语种 | 英语 |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.ciomp.ac.cn/handle/181722/66865 |
专题 | 中国科学院长春光学精密机械与物理研究所 |
推荐引用方式 GB/T 7714 | D. X. Liu,Y. R. Wang,P. X. Liu,et al. A Multibranch Crossover Feature Attention Network for Hyperspectral Image Classification[J]. Remote Sensing,2022,14(22):19. |
APA | D. X. Liu.,Y. R. Wang.,P. X. Liu.,Q. Q. Li.,H. Yang.,...&Z. C. Liu and G. L. Han.(2022).A Multibranch Crossover Feature Attention Network for Hyperspectral Image Classification.Remote Sensing,14(22),19. |
MLA | D. X. Liu,et al."A Multibranch Crossover Feature Attention Network for Hyperspectral Image Classification".Remote Sensing 14.22(2022):19. |
条目包含的文件 | 下载所有文件 | |||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
A Multibranch Crosso(17080KB) | 期刊论文 | 出版稿 | 开放获取 | CC BY-NC-SA | 浏览 下载 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论